This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Mario Carneiro, 10-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | archnq | |- ( A e. Q. -> E. x e. N. A. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpqn | |- ( A e. Q. -> A e. ( N. X. N. ) ) |
|
| 2 | xp1st | |- ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) |
|
| 3 | 1 2 | syl | |- ( A e. Q. -> ( 1st ` A ) e. N. ) |
| 4 | 1pi | |- 1o e. N. |
|
| 5 | addclpi | |- ( ( ( 1st ` A ) e. N. /\ 1o e. N. ) -> ( ( 1st ` A ) +N 1o ) e. N. ) |
|
| 6 | 3 4 5 | sylancl | |- ( A e. Q. -> ( ( 1st ` A ) +N 1o ) e. N. ) |
| 7 | xp2nd | |- ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) |
|
| 8 | 1 7 | syl | |- ( A e. Q. -> ( 2nd ` A ) e. N. ) |
| 9 | mulclpi | |- ( ( ( ( 1st ` A ) +N 1o ) e. N. /\ ( 2nd ` A ) e. N. ) -> ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) e. N. ) |
|
| 10 | 6 8 9 | syl2anc | |- ( A e. Q. -> ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) e. N. ) |
| 11 | eqid | |- ( ( 1st ` A ) +N 1o ) = ( ( 1st ` A ) +N 1o ) |
|
| 12 | oveq2 | |- ( x = 1o -> ( ( 1st ` A ) +N x ) = ( ( 1st ` A ) +N 1o ) ) |
|
| 13 | 12 | eqeq1d | |- ( x = 1o -> ( ( ( 1st ` A ) +N x ) = ( ( 1st ` A ) +N 1o ) <-> ( ( 1st ` A ) +N 1o ) = ( ( 1st ` A ) +N 1o ) ) ) |
| 14 | 13 | rspcev | |- ( ( 1o e. N. /\ ( ( 1st ` A ) +N 1o ) = ( ( 1st ` A ) +N 1o ) ) -> E. x e. N. ( ( 1st ` A ) +N x ) = ( ( 1st ` A ) +N 1o ) ) |
| 15 | 4 11 14 | mp2an | |- E. x e. N. ( ( 1st ` A ) +N x ) = ( ( 1st ` A ) +N 1o ) |
| 16 | ltexpi | |- ( ( ( 1st ` A ) e. N. /\ ( ( 1st ` A ) +N 1o ) e. N. ) -> ( ( 1st ` A ) |
|
| 17 | 15 16 | mpbiri | |- ( ( ( 1st ` A ) e. N. /\ ( ( 1st ` A ) +N 1o ) e. N. ) -> ( 1st ` A ) |
| 18 | 3 6 17 | syl2anc | |- ( A e. Q. -> ( 1st ` A ) |
| 19 | nlt1pi | |- -. ( 2nd ` A ) |
|
| 20 | ltmpi | |- ( ( ( 1st ` A ) +N 1o ) e. N. -> ( ( 2nd ` A ) |
|
| 21 | 6 20 | syl | |- ( A e. Q. -> ( ( 2nd ` A ) |
| 22 | mulidpi | |- ( ( ( 1st ` A ) +N 1o ) e. N. -> ( ( ( 1st ` A ) +N 1o ) .N 1o ) = ( ( 1st ` A ) +N 1o ) ) |
|
| 23 | 6 22 | syl | |- ( A e. Q. -> ( ( ( 1st ` A ) +N 1o ) .N 1o ) = ( ( 1st ` A ) +N 1o ) ) |
| 24 | 23 | breq2d | |- ( A e. Q. -> ( ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) |
| 25 | 21 24 | bitrd | |- ( A e. Q. -> ( ( 2nd ` A ) |
| 26 | 19 25 | mtbii | |- ( A e. Q. -> -. ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) |
| 27 | ltsopi | |- |
|
| 28 | ltrelpi | |- |
|
| 29 | 27 28 | sotri3 | |- ( ( ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) e. N. /\ ( 1st ` A ) |
| 30 | 10 18 26 29 | syl3anc | |- ( A e. Q. -> ( 1st ` A ) |
| 31 | pinq | |- ( ( ( 1st ` A ) +N 1o ) e. N. -> <. ( ( 1st ` A ) +N 1o ) , 1o >. e. Q. ) |
|
| 32 | 6 31 | syl | |- ( A e. Q. -> <. ( ( 1st ` A ) +N 1o ) , 1o >. e. Q. ) |
| 33 | ordpinq | |- ( ( A e. Q. /\ <. ( ( 1st ` A ) +N 1o ) , 1o >. e. Q. ) -> ( A. <-> ( ( 1st ` A ) .N ( 2nd ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) ) |
|
| 34 | 32 33 | mpdan | |- ( A e. Q. -> ( A. <-> ( ( 1st ` A ) .N ( 2nd ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) ) |
| 35 | ovex | |- ( ( 1st ` A ) +N 1o ) e. _V |
|
| 36 | 1oex | |- 1o e. _V |
|
| 37 | 35 36 | op2nd | |- ( 2nd ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) = 1o |
| 38 | 37 | oveq2i | |- ( ( 1st ` A ) .N ( 2nd ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) ) = ( ( 1st ` A ) .N 1o ) |
| 39 | mulidpi | |- ( ( 1st ` A ) e. N. -> ( ( 1st ` A ) .N 1o ) = ( 1st ` A ) ) |
|
| 40 | 3 39 | syl | |- ( A e. Q. -> ( ( 1st ` A ) .N 1o ) = ( 1st ` A ) ) |
| 41 | 38 40 | eqtrid | |- ( A e. Q. -> ( ( 1st ` A ) .N ( 2nd ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) ) = ( 1st ` A ) ) |
| 42 | 35 36 | op1st | |- ( 1st ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) = ( ( 1st ` A ) +N 1o ) |
| 43 | 42 | oveq1i | |- ( ( 1st ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) .N ( 2nd ` A ) ) = ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) |
| 44 | 43 | a1i | |- ( A e. Q. -> ( ( 1st ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) .N ( 2nd ` A ) ) = ( ( ( 1st ` A ) +N 1o ) .N ( 2nd ` A ) ) ) |
| 45 | 41 44 | breq12d | |- ( A e. Q. -> ( ( ( 1st ` A ) .N ( 2nd ` <. ( ( 1st ` A ) +N 1o ) , 1o >. ) ) |
| 46 | 34 45 | bitrd | |- ( A e. Q. -> ( A. <-> ( 1st ` A ) |
| 47 | 30 46 | mpbird | |- ( A e. Q. -> A. ) |
| 48 | opeq1 | |- ( x = ( ( 1st ` A ) +N 1o ) -> <. x , 1o >. = <. ( ( 1st ` A ) +N 1o ) , 1o >. ) |
|
| 49 | 48 | breq2d | |- ( x = ( ( 1st ` A ) +N 1o ) -> ( A. <-> A. ) ) |
| 50 | 49 | rspcev | |- ( ( ( ( 1st ` A ) +N 1o ) e. N. /\ A. ) -> E. x e. N. A. ) |
| 51 | 6 47 50 | syl2anc | |- ( A e. Q. -> E. x e. N. A. ) |