This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of addition on reals. Axiom 20 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-ltadd with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axltadd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B -> ( C + A ) < ( C + B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-ltadd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A |
|
| 2 | ltxrlt | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> A |
|
| 3 | 2 | 3adant3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> A |
| 4 | readdcl | |- ( ( C e. RR /\ A e. RR ) -> ( C + A ) e. RR ) |
|
| 5 | readdcl | |- ( ( C e. RR /\ B e. RR ) -> ( C + B ) e. RR ) |
|
| 6 | ltxrlt | |- ( ( ( C + A ) e. RR /\ ( C + B ) e. RR ) -> ( ( C + A ) < ( C + B ) <-> ( C + A ) |
|
| 7 | 4 5 6 | syl2an | |- ( ( ( C e. RR /\ A e. RR ) /\ ( C e. RR /\ B e. RR ) ) -> ( ( C + A ) < ( C + B ) <-> ( C + A ) |
| 8 | 7 | 3impdi | |- ( ( C e. RR /\ A e. RR /\ B e. RR ) -> ( ( C + A ) < ( C + B ) <-> ( C + A ) |
| 9 | 8 | 3coml | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + A ) < ( C + B ) <-> ( C + A ) |
| 10 | 1 3 9 | 3imtr4d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B -> ( C + A ) < ( C + B ) ) ) |