This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inopab | |- ( { <. x , y >. | ph } i^i { <. x , y >. | ps } ) = { <. x , y >. | ( ph /\ ps ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv | |- Rel { <. x , y >. | ph } |
|
| 2 | relin1 | |- ( Rel { <. x , y >. | ph } -> Rel ( { <. x , y >. | ph } i^i { <. x , y >. | ps } ) ) |
|
| 3 | 1 2 | ax-mp | |- Rel ( { <. x , y >. | ph } i^i { <. x , y >. | ps } ) |
| 4 | relopabv | |- Rel { <. x , y >. | ( ph /\ ps ) } |
|
| 5 | sban | |- ( [ z / x ] ( [ w / y ] ph /\ [ w / y ] ps ) <-> ( [ z / x ] [ w / y ] ph /\ [ z / x ] [ w / y ] ps ) ) |
|
| 6 | sban | |- ( [ w / y ] ( ph /\ ps ) <-> ( [ w / y ] ph /\ [ w / y ] ps ) ) |
|
| 7 | 6 | sbbii | |- ( [ z / x ] [ w / y ] ( ph /\ ps ) <-> [ z / x ] ( [ w / y ] ph /\ [ w / y ] ps ) ) |
| 8 | vopelopabsb | |- ( <. z , w >. e. { <. x , y >. | ph } <-> [ z / x ] [ w / y ] ph ) |
|
| 9 | vopelopabsb | |- ( <. z , w >. e. { <. x , y >. | ps } <-> [ z / x ] [ w / y ] ps ) |
|
| 10 | 8 9 | anbi12i | |- ( ( <. z , w >. e. { <. x , y >. | ph } /\ <. z , w >. e. { <. x , y >. | ps } ) <-> ( [ z / x ] [ w / y ] ph /\ [ z / x ] [ w / y ] ps ) ) |
| 11 | 5 7 10 | 3bitr4ri | |- ( ( <. z , w >. e. { <. x , y >. | ph } /\ <. z , w >. e. { <. x , y >. | ps } ) <-> [ z / x ] [ w / y ] ( ph /\ ps ) ) |
| 12 | elin | |- ( <. z , w >. e. ( { <. x , y >. | ph } i^i { <. x , y >. | ps } ) <-> ( <. z , w >. e. { <. x , y >. | ph } /\ <. z , w >. e. { <. x , y >. | ps } ) ) |
|
| 13 | vopelopabsb | |- ( <. z , w >. e. { <. x , y >. | ( ph /\ ps ) } <-> [ z / x ] [ w / y ] ( ph /\ ps ) ) |
|
| 14 | 11 12 13 | 3bitr4i | |- ( <. z , w >. e. ( { <. x , y >. | ph } i^i { <. x , y >. | ps } ) <-> <. z , w >. e. { <. x , y >. | ( ph /\ ps ) } ) |
| 15 | 3 4 14 | eqrelriiv | |- ( { <. x , y >. | ph } i^i { <. x , y >. | ps } ) = { <. x , y >. | ( ph /\ ps ) } |