This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternative definition of G in terms of df-oi . (Contributed by Mario Carneiro, 2-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | |- C e. ZZ |
|
| om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
||
| Assertion | om2uzoi | |- G = OrdIso ( < , ( ZZ>= ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | |- C e. ZZ |
|
| 2 | om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
|
| 3 | ordom | |- Ord _om |
|
| 4 | 1 2 | om2uzisoi | |- G Isom _E , < ( _om , ( ZZ>= ` C ) ) |
| 5 | 3 4 | pm3.2i | |- ( Ord _om /\ G Isom _E , < ( _om , ( ZZ>= ` C ) ) ) |
| 6 | ordwe | |- ( Ord _om -> _E We _om ) |
|
| 7 | 3 6 | ax-mp | |- _E We _om |
| 8 | isowe | |- ( G Isom _E , < ( _om , ( ZZ>= ` C ) ) -> ( _E We _om <-> < We ( ZZ>= ` C ) ) ) |
|
| 9 | 4 8 | ax-mp | |- ( _E We _om <-> < We ( ZZ>= ` C ) ) |
| 10 | 7 9 | mpbi | |- < We ( ZZ>= ` C ) |
| 11 | fvex | |- ( ZZ>= ` C ) e. _V |
|
| 12 | exse | |- ( ( ZZ>= ` C ) e. _V -> < Se ( ZZ>= ` C ) ) |
|
| 13 | 11 12 | ax-mp | |- < Se ( ZZ>= ` C ) |
| 14 | eqid | |- OrdIso ( < , ( ZZ>= ` C ) ) = OrdIso ( < , ( ZZ>= ` C ) ) |
|
| 15 | 14 | oieu | |- ( ( < We ( ZZ>= ` C ) /\ < Se ( ZZ>= ` C ) ) -> ( ( Ord _om /\ G Isom _E , < ( _om , ( ZZ>= ` C ) ) ) <-> ( _om = dom OrdIso ( < , ( ZZ>= ` C ) ) /\ G = OrdIso ( < , ( ZZ>= ` C ) ) ) ) ) |
| 16 | 10 13 15 | mp2an | |- ( ( Ord _om /\ G Isom _E , < ( _om , ( ZZ>= ` C ) ) ) <-> ( _om = dom OrdIso ( < , ( ZZ>= ` C ) ) /\ G = OrdIso ( < , ( ZZ>= ` C ) ) ) ) |
| 17 | 5 16 | mpbi | |- ( _om = dom OrdIso ( < , ( ZZ>= ` C ) ) /\ G = OrdIso ( < , ( ZZ>= ` C ) ) ) |
| 18 | 17 | simpri | |- G = OrdIso ( < , ( ZZ>= ` C ) ) |