This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparable spans of nonzero singletons are equal. (Contributed by NM, 27-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsncmp.v | |- V = ( Base ` W ) |
|
| lspsncmp.o | |- .0. = ( 0g ` W ) |
||
| lspsncmp.n | |- N = ( LSpan ` W ) |
||
| lspsncmp.w | |- ( ph -> W e. LVec ) |
||
| lspsncmp.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
||
| lspsncmp.y | |- ( ph -> Y e. V ) |
||
| Assertion | lspsncmp | |- ( ph -> ( ( N ` { X } ) C_ ( N ` { Y } ) <-> ( N ` { X } ) = ( N ` { Y } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsncmp.v | |- V = ( Base ` W ) |
|
| 2 | lspsncmp.o | |- .0. = ( 0g ` W ) |
|
| 3 | lspsncmp.n | |- N = ( LSpan ` W ) |
|
| 4 | lspsncmp.w | |- ( ph -> W e. LVec ) |
|
| 5 | lspsncmp.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
|
| 6 | lspsncmp.y | |- ( ph -> Y e. V ) |
|
| 7 | 4 | adantr | |- ( ( ph /\ ( N ` { X } ) C_ ( N ` { Y } ) ) -> W e. LVec ) |
| 8 | 6 | adantr | |- ( ( ph /\ ( N ` { X } ) C_ ( N ` { Y } ) ) -> Y e. V ) |
| 9 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 10 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 11 | 4 10 | syl | |- ( ph -> W e. LMod ) |
| 12 | 1 9 3 | lspsncl | |- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 13 | 11 6 12 | syl2anc | |- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 14 | 5 | eldifad | |- ( ph -> X e. V ) |
| 15 | 1 9 3 11 13 14 | ellspsn5b | |- ( ph -> ( X e. ( N ` { Y } ) <-> ( N ` { X } ) C_ ( N ` { Y } ) ) ) |
| 16 | 15 | biimpar | |- ( ( ph /\ ( N ` { X } ) C_ ( N ` { Y } ) ) -> X e. ( N ` { Y } ) ) |
| 17 | eldifsni | |- ( X e. ( V \ { .0. } ) -> X =/= .0. ) |
|
| 18 | 5 17 | syl | |- ( ph -> X =/= .0. ) |
| 19 | 18 | adantr | |- ( ( ph /\ ( N ` { X } ) C_ ( N ` { Y } ) ) -> X =/= .0. ) |
| 20 | 1 2 3 7 8 16 19 | lspsneleq | |- ( ( ph /\ ( N ` { X } ) C_ ( N ` { Y } ) ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
| 21 | 20 | ex | |- ( ph -> ( ( N ` { X } ) C_ ( N ` { Y } ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
| 22 | eqimss | |- ( ( N ` { X } ) = ( N ` { Y } ) -> ( N ` { X } ) C_ ( N ` { Y } ) ) |
|
| 23 | 21 22 | impbid1 | |- ( ph -> ( ( N ` { X } ) C_ ( N ` { Y } ) <-> ( N ` { X } ) = ( N ` { Y } ) ) ) |