This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear function is completely determined (or overdetermined) by its values on a spanning subset. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by NM, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspextmo.b | |- B = ( Base ` S ) |
|
| lspextmo.k | |- K = ( LSpan ` S ) |
||
| Assertion | lspextmo | |- ( ( X C_ B /\ ( K ` X ) = B ) -> E* g e. ( S LMHom T ) ( g |` X ) = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspextmo.b | |- B = ( Base ` S ) |
|
| 2 | lspextmo.k | |- K = ( LSpan ` S ) |
|
| 3 | eqtr3 | |- ( ( ( g |` X ) = F /\ ( h |` X ) = F ) -> ( g |` X ) = ( h |` X ) ) |
|
| 4 | inss1 | |- ( g i^i h ) C_ g |
|
| 5 | dmss | |- ( ( g i^i h ) C_ g -> dom ( g i^i h ) C_ dom g ) |
|
| 6 | 4 5 | ax-mp | |- dom ( g i^i h ) C_ dom g |
| 7 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 8 | 1 7 | lmhmf | |- ( g e. ( S LMHom T ) -> g : B --> ( Base ` T ) ) |
| 9 | 8 | ad2antrl | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> g : B --> ( Base ` T ) ) |
| 10 | 9 | ffnd | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> g Fn B ) |
| 11 | 10 | adantrr | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> g Fn B ) |
| 12 | 11 | fndmd | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> dom g = B ) |
| 13 | 6 12 | sseqtrid | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> dom ( g i^i h ) C_ B ) |
| 14 | simplr | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> ( K ` X ) = B ) |
|
| 15 | lmhmlmod1 | |- ( g e. ( S LMHom T ) -> S e. LMod ) |
|
| 16 | 15 | adantr | |- ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) -> S e. LMod ) |
| 17 | 16 | ad2antrl | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> S e. LMod ) |
| 18 | eqid | |- ( LSubSp ` S ) = ( LSubSp ` S ) |
|
| 19 | 18 | lmhmeql | |- ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) -> dom ( g i^i h ) e. ( LSubSp ` S ) ) |
| 20 | 19 | ad2antrl | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> dom ( g i^i h ) e. ( LSubSp ` S ) ) |
| 21 | simprr | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> X C_ dom ( g i^i h ) ) |
|
| 22 | 18 2 | lspssp | |- ( ( S e. LMod /\ dom ( g i^i h ) e. ( LSubSp ` S ) /\ X C_ dom ( g i^i h ) ) -> ( K ` X ) C_ dom ( g i^i h ) ) |
| 23 | 17 20 21 22 | syl3anc | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> ( K ` X ) C_ dom ( g i^i h ) ) |
| 24 | 14 23 | eqsstrrd | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> B C_ dom ( g i^i h ) ) |
| 25 | 13 24 | eqssd | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) /\ X C_ dom ( g i^i h ) ) ) -> dom ( g i^i h ) = B ) |
| 26 | 25 | expr | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> ( X C_ dom ( g i^i h ) -> dom ( g i^i h ) = B ) ) |
| 27 | simprr | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> h e. ( S LMHom T ) ) |
|
| 28 | 1 7 | lmhmf | |- ( h e. ( S LMHom T ) -> h : B --> ( Base ` T ) ) |
| 29 | ffn | |- ( h : B --> ( Base ` T ) -> h Fn B ) |
|
| 30 | 27 28 29 | 3syl | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> h Fn B ) |
| 31 | simpll | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> X C_ B ) |
|
| 32 | fnreseql | |- ( ( g Fn B /\ h Fn B /\ X C_ B ) -> ( ( g |` X ) = ( h |` X ) <-> X C_ dom ( g i^i h ) ) ) |
|
| 33 | 10 30 31 32 | syl3anc | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> ( ( g |` X ) = ( h |` X ) <-> X C_ dom ( g i^i h ) ) ) |
| 34 | fneqeql | |- ( ( g Fn B /\ h Fn B ) -> ( g = h <-> dom ( g i^i h ) = B ) ) |
|
| 35 | 10 30 34 | syl2anc | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> ( g = h <-> dom ( g i^i h ) = B ) ) |
| 36 | 26 33 35 | 3imtr4d | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> ( ( g |` X ) = ( h |` X ) -> g = h ) ) |
| 37 | 3 36 | syl5 | |- ( ( ( X C_ B /\ ( K ` X ) = B ) /\ ( g e. ( S LMHom T ) /\ h e. ( S LMHom T ) ) ) -> ( ( ( g |` X ) = F /\ ( h |` X ) = F ) -> g = h ) ) |
| 38 | 37 | ralrimivva | |- ( ( X C_ B /\ ( K ` X ) = B ) -> A. g e. ( S LMHom T ) A. h e. ( S LMHom T ) ( ( ( g |` X ) = F /\ ( h |` X ) = F ) -> g = h ) ) |
| 39 | reseq1 | |- ( g = h -> ( g |` X ) = ( h |` X ) ) |
|
| 40 | 39 | eqeq1d | |- ( g = h -> ( ( g |` X ) = F <-> ( h |` X ) = F ) ) |
| 41 | 40 | rmo4 | |- ( E* g e. ( S LMHom T ) ( g |` X ) = F <-> A. g e. ( S LMHom T ) A. h e. ( S LMHom T ) ( ( ( g |` X ) = F /\ ( h |` X ) = F ) -> g = h ) ) |
| 42 | 38 41 | sylibr | |- ( ( X C_ B /\ ( K ` X ) = B ) -> E* g e. ( S LMHom T ) ( g |` X ) = F ) |