This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set of vectors is a subset of a subspace, then the span of those vectors is also contained in the subspace. (Contributed by Mario Carneiro, 4-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspssp.s | |- S = ( LSubSp ` W ) |
|
| lspssp.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspssp | |- ( ( W e. LMod /\ U e. S /\ T C_ U ) -> ( N ` T ) C_ U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspssp.s | |- S = ( LSubSp ` W ) |
|
| 2 | lspssp.n | |- N = ( LSpan ` W ) |
|
| 3 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 4 | 3 1 | lssss | |- ( U e. S -> U C_ ( Base ` W ) ) |
| 5 | 3 2 | lspss | |- ( ( W e. LMod /\ U C_ ( Base ` W ) /\ T C_ U ) -> ( N ` T ) C_ ( N ` U ) ) |
| 6 | 4 5 | syl3an2 | |- ( ( W e. LMod /\ U e. S /\ T C_ U ) -> ( N ` T ) C_ ( N ` U ) ) |
| 7 | 1 2 | lspid | |- ( ( W e. LMod /\ U e. S ) -> ( N ` U ) = U ) |
| 8 | 7 | 3adant3 | |- ( ( W e. LMod /\ U e. S /\ T C_ U ) -> ( N ` U ) = U ) |
| 9 | 6 8 | sseqtrd | |- ( ( W e. LMod /\ U e. S /\ T C_ U ) -> ( N ` T ) C_ U ) |