This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a vector not in a subspace is disjoint with the subspace. (Contributed by NM, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspdisj.v | |- V = ( Base ` W ) |
|
| lspdisj.o | |- .0. = ( 0g ` W ) |
||
| lspdisj.n | |- N = ( LSpan ` W ) |
||
| lspdisj.s | |- S = ( LSubSp ` W ) |
||
| lspdisj.w | |- ( ph -> W e. LVec ) |
||
| lspdisj.u | |- ( ph -> U e. S ) |
||
| lspdisj.x | |- ( ph -> X e. V ) |
||
| lspdisj.e | |- ( ph -> -. X e. U ) |
||
| Assertion | lspdisj | |- ( ph -> ( ( N ` { X } ) i^i U ) = { .0. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspdisj.v | |- V = ( Base ` W ) |
|
| 2 | lspdisj.o | |- .0. = ( 0g ` W ) |
|
| 3 | lspdisj.n | |- N = ( LSpan ` W ) |
|
| 4 | lspdisj.s | |- S = ( LSubSp ` W ) |
|
| 5 | lspdisj.w | |- ( ph -> W e. LVec ) |
|
| 6 | lspdisj.u | |- ( ph -> U e. S ) |
|
| 7 | lspdisj.x | |- ( ph -> X e. V ) |
|
| 8 | lspdisj.e | |- ( ph -> -. X e. U ) |
|
| 9 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 10 | 5 9 | syl | |- ( ph -> W e. LMod ) |
| 11 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 12 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 13 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 14 | 11 12 1 13 3 | ellspsn | |- ( ( W e. LMod /\ X e. V ) -> ( v e. ( N ` { X } ) <-> E. k e. ( Base ` ( Scalar ` W ) ) v = ( k ( .s ` W ) X ) ) ) |
| 15 | 10 7 14 | syl2anc | |- ( ph -> ( v e. ( N ` { X } ) <-> E. k e. ( Base ` ( Scalar ` W ) ) v = ( k ( .s ` W ) X ) ) ) |
| 16 | 15 | biimpa | |- ( ( ph /\ v e. ( N ` { X } ) ) -> E. k e. ( Base ` ( Scalar ` W ) ) v = ( k ( .s ` W ) X ) ) |
| 17 | 16 | adantrr | |- ( ( ph /\ ( v e. ( N ` { X } ) /\ v e. U ) ) -> E. k e. ( Base ` ( Scalar ` W ) ) v = ( k ( .s ` W ) X ) ) |
| 18 | simprr | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> v = ( k ( .s ` W ) X ) ) |
|
| 19 | 8 | ad2antrr | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> -. X e. U ) |
| 20 | simplr | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> v e. U ) |
|
| 21 | 18 20 | eqeltrrd | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> ( k ( .s ` W ) X ) e. U ) |
| 22 | eqid | |- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
|
| 23 | 5 | ad2antrr | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> W e. LVec ) |
| 24 | 6 | ad2antrr | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> U e. S ) |
| 25 | 7 | ad2antrr | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> X e. V ) |
| 26 | simprl | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> k e. ( Base ` ( Scalar ` W ) ) ) |
|
| 27 | 1 13 11 12 22 4 23 24 25 26 | lssvs0or | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> ( ( k ( .s ` W ) X ) e. U <-> ( k = ( 0g ` ( Scalar ` W ) ) \/ X e. U ) ) ) |
| 28 | 21 27 | mpbid | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> ( k = ( 0g ` ( Scalar ` W ) ) \/ X e. U ) ) |
| 29 | 28 | orcomd | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> ( X e. U \/ k = ( 0g ` ( Scalar ` W ) ) ) ) |
| 30 | 29 | ord | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> ( -. X e. U -> k = ( 0g ` ( Scalar ` W ) ) ) ) |
| 31 | 19 30 | mpd | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> k = ( 0g ` ( Scalar ` W ) ) ) |
| 32 | 31 | oveq1d | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> ( k ( .s ` W ) X ) = ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) X ) ) |
| 33 | 10 | ad2antrr | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> W e. LMod ) |
| 34 | 1 11 13 22 2 | lmod0vs | |- ( ( W e. LMod /\ X e. V ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) X ) = .0. ) |
| 35 | 33 25 34 | syl2anc | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) X ) = .0. ) |
| 36 | 18 32 35 | 3eqtrd | |- ( ( ( ph /\ v e. U ) /\ ( k e. ( Base ` ( Scalar ` W ) ) /\ v = ( k ( .s ` W ) X ) ) ) -> v = .0. ) |
| 37 | 36 | exp32 | |- ( ( ph /\ v e. U ) -> ( k e. ( Base ` ( Scalar ` W ) ) -> ( v = ( k ( .s ` W ) X ) -> v = .0. ) ) ) |
| 38 | 37 | adantrl | |- ( ( ph /\ ( v e. ( N ` { X } ) /\ v e. U ) ) -> ( k e. ( Base ` ( Scalar ` W ) ) -> ( v = ( k ( .s ` W ) X ) -> v = .0. ) ) ) |
| 39 | 38 | rexlimdv | |- ( ( ph /\ ( v e. ( N ` { X } ) /\ v e. U ) ) -> ( E. k e. ( Base ` ( Scalar ` W ) ) v = ( k ( .s ` W ) X ) -> v = .0. ) ) |
| 40 | 17 39 | mpd | |- ( ( ph /\ ( v e. ( N ` { X } ) /\ v e. U ) ) -> v = .0. ) |
| 41 | 40 | ex | |- ( ph -> ( ( v e. ( N ` { X } ) /\ v e. U ) -> v = .0. ) ) |
| 42 | elin | |- ( v e. ( ( N ` { X } ) i^i U ) <-> ( v e. ( N ` { X } ) /\ v e. U ) ) |
|
| 43 | velsn | |- ( v e. { .0. } <-> v = .0. ) |
|
| 44 | 41 42 43 | 3imtr4g | |- ( ph -> ( v e. ( ( N ` { X } ) i^i U ) -> v e. { .0. } ) ) |
| 45 | 44 | ssrdv | |- ( ph -> ( ( N ` { X } ) i^i U ) C_ { .0. } ) |
| 46 | 1 4 3 | lspsncl | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. S ) |
| 47 | 10 7 46 | syl2anc | |- ( ph -> ( N ` { X } ) e. S ) |
| 48 | 2 4 | lss0ss | |- ( ( W e. LMod /\ ( N ` { X } ) e. S ) -> { .0. } C_ ( N ` { X } ) ) |
| 49 | 10 47 48 | syl2anc | |- ( ph -> { .0. } C_ ( N ` { X } ) ) |
| 50 | 2 4 | lss0ss | |- ( ( W e. LMod /\ U e. S ) -> { .0. } C_ U ) |
| 51 | 10 6 50 | syl2anc | |- ( ph -> { .0. } C_ U ) |
| 52 | 49 51 | ssind | |- ( ph -> { .0. } C_ ( ( N ` { X } ) i^i U ) ) |
| 53 | 45 52 | eqssd | |- ( ph -> ( ( N ` { X } ) i^i U ) = { .0. } ) |