This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero vector is not in a subspace iff its span is disjoint with the subspace. (Contributed by NM, 23-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspdisjb.v | |- V = ( Base ` W ) |
|
| lspdisjb.o | |- .0. = ( 0g ` W ) |
||
| lspdisjb.n | |- N = ( LSpan ` W ) |
||
| lspdisjb.s | |- S = ( LSubSp ` W ) |
||
| lspdisjb.w | |- ( ph -> W e. LVec ) |
||
| lspdisjb.u | |- ( ph -> U e. S ) |
||
| lspdisjb.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
||
| Assertion | lspdisjb | |- ( ph -> ( -. X e. U <-> ( ( N ` { X } ) i^i U ) = { .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspdisjb.v | |- V = ( Base ` W ) |
|
| 2 | lspdisjb.o | |- .0. = ( 0g ` W ) |
|
| 3 | lspdisjb.n | |- N = ( LSpan ` W ) |
|
| 4 | lspdisjb.s | |- S = ( LSubSp ` W ) |
|
| 5 | lspdisjb.w | |- ( ph -> W e. LVec ) |
|
| 6 | lspdisjb.u | |- ( ph -> U e. S ) |
|
| 7 | lspdisjb.x | |- ( ph -> X e. ( V \ { .0. } ) ) |
|
| 8 | 5 | adantr | |- ( ( ph /\ -. X e. U ) -> W e. LVec ) |
| 9 | 6 | adantr | |- ( ( ph /\ -. X e. U ) -> U e. S ) |
| 10 | 7 | eldifad | |- ( ph -> X e. V ) |
| 11 | 10 | adantr | |- ( ( ph /\ -. X e. U ) -> X e. V ) |
| 12 | simpr | |- ( ( ph /\ -. X e. U ) -> -. X e. U ) |
|
| 13 | 1 2 3 4 8 9 11 12 | lspdisj | |- ( ( ph /\ -. X e. U ) -> ( ( N ` { X } ) i^i U ) = { .0. } ) |
| 14 | eldifsni | |- ( X e. ( V \ { .0. } ) -> X =/= .0. ) |
|
| 15 | 7 14 | syl | |- ( ph -> X =/= .0. ) |
| 16 | 15 | adantr | |- ( ( ph /\ ( ( N ` { X } ) i^i U ) = { .0. } ) -> X =/= .0. ) |
| 17 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 18 | 5 17 | syl | |- ( ph -> W e. LMod ) |
| 19 | 1 3 | lspsnid | |- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |
| 20 | 18 10 19 | syl2anc | |- ( ph -> X e. ( N ` { X } ) ) |
| 21 | elin | |- ( X e. ( ( N ` { X } ) i^i U ) <-> ( X e. ( N ` { X } ) /\ X e. U ) ) |
|
| 22 | eleq2 | |- ( ( ( N ` { X } ) i^i U ) = { .0. } -> ( X e. ( ( N ` { X } ) i^i U ) <-> X e. { .0. } ) ) |
|
| 23 | elsni | |- ( X e. { .0. } -> X = .0. ) |
|
| 24 | 22 23 | biimtrdi | |- ( ( ( N ` { X } ) i^i U ) = { .0. } -> ( X e. ( ( N ` { X } ) i^i U ) -> X = .0. ) ) |
| 25 | 21 24 | biimtrrid | |- ( ( ( N ` { X } ) i^i U ) = { .0. } -> ( ( X e. ( N ` { X } ) /\ X e. U ) -> X = .0. ) ) |
| 26 | 25 | expd | |- ( ( ( N ` { X } ) i^i U ) = { .0. } -> ( X e. ( N ` { X } ) -> ( X e. U -> X = .0. ) ) ) |
| 27 | 20 26 | mpan9 | |- ( ( ph /\ ( ( N ` { X } ) i^i U ) = { .0. } ) -> ( X e. U -> X = .0. ) ) |
| 28 | 27 | necon3ad | |- ( ( ph /\ ( ( N ` { X } ) i^i U ) = { .0. } ) -> ( X =/= .0. -> -. X e. U ) ) |
| 29 | 16 28 | mpd | |- ( ( ph /\ ( ( N ` { X } ) i^i U ) = { .0. } ) -> -. X e. U ) |
| 30 | 13 29 | impbida | |- ( ph -> ( -. X e. U <-> ( ( N ` { X } ) i^i U ) = { .0. } ) ) |