This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspabs2.v | |- V = ( Base ` W ) |
|
| lspabs2.p | |- .+ = ( +g ` W ) |
||
| lspabs2.o | |- .0. = ( 0g ` W ) |
||
| lspabs2.n | |- N = ( LSpan ` W ) |
||
| lspabs2.w | |- ( ph -> W e. LVec ) |
||
| lspabs2.x | |- ( ph -> X e. V ) |
||
| lspabs3.y | |- ( ph -> Y e. V ) |
||
| lspabs3.xy | |- ( ph -> ( X .+ Y ) =/= .0. ) |
||
| lspabs3.e | |- ( ph -> ( N ` { X } ) = ( N ` { Y } ) ) |
||
| Assertion | lspabs3 | |- ( ph -> ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspabs2.v | |- V = ( Base ` W ) |
|
| 2 | lspabs2.p | |- .+ = ( +g ` W ) |
|
| 3 | lspabs2.o | |- .0. = ( 0g ` W ) |
|
| 4 | lspabs2.n | |- N = ( LSpan ` W ) |
|
| 5 | lspabs2.w | |- ( ph -> W e. LVec ) |
|
| 6 | lspabs2.x | |- ( ph -> X e. V ) |
|
| 7 | lspabs3.y | |- ( ph -> Y e. V ) |
|
| 8 | lspabs3.xy | |- ( ph -> ( X .+ Y ) =/= .0. ) |
|
| 9 | lspabs3.e | |- ( ph -> ( N ` { X } ) = ( N ` { Y } ) ) |
|
| 10 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 11 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 12 | 5 11 | syl | |- ( ph -> W e. LMod ) |
| 13 | 1 10 4 | lspsncl | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 14 | 12 6 13 | syl2anc | |- ( ph -> ( N ` { X } ) e. ( LSubSp ` W ) ) |
| 15 | 1 10 4 | lspsncl | |- ( ( W e. LMod /\ Y e. V ) -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 16 | 12 7 15 | syl2anc | |- ( ph -> ( N ` { Y } ) e. ( LSubSp ` W ) ) |
| 17 | eqid | |- ( LSSum ` W ) = ( LSSum ` W ) |
|
| 18 | 10 17 | lsmcl | |- ( ( W e. LMod /\ ( N ` { X } ) e. ( LSubSp ` W ) /\ ( N ` { Y } ) e. ( LSubSp ` W ) ) -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) e. ( LSubSp ` W ) ) |
| 19 | 12 14 16 18 | syl3anc | |- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) e. ( LSubSp ` W ) ) |
| 20 | 1 4 | lspsnsubg | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
| 21 | 12 6 20 | syl2anc | |- ( ph -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
| 22 | 9 21 | eqeltrrd | |- ( ph -> ( N ` { Y } ) e. ( SubGrp ` W ) ) |
| 23 | 1 4 | lspsnid | |- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |
| 24 | 12 6 23 | syl2anc | |- ( ph -> X e. ( N ` { X } ) ) |
| 25 | 1 4 | lspsnid | |- ( ( W e. LMod /\ Y e. V ) -> Y e. ( N ` { Y } ) ) |
| 26 | 12 7 25 | syl2anc | |- ( ph -> Y e. ( N ` { Y } ) ) |
| 27 | 2 17 | lsmelvali | |- ( ( ( ( N ` { X } ) e. ( SubGrp ` W ) /\ ( N ` { Y } ) e. ( SubGrp ` W ) ) /\ ( X e. ( N ` { X } ) /\ Y e. ( N ` { Y } ) ) ) -> ( X .+ Y ) e. ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
| 28 | 21 22 24 26 27 | syl22anc | |- ( ph -> ( X .+ Y ) e. ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
| 29 | 10 4 12 19 28 | ellspsn5 | |- ( ph -> ( N ` { ( X .+ Y ) } ) C_ ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
| 30 | 9 | oveq2d | |- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { X } ) ) = ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) ) |
| 31 | 17 | lsmidm | |- ( ( N ` { X } ) e. ( SubGrp ` W ) -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { X } ) ) = ( N ` { X } ) ) |
| 32 | 21 31 | syl | |- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { X } ) ) = ( N ` { X } ) ) |
| 33 | 30 32 | eqtr3d | |- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { Y } ) ) = ( N ` { X } ) ) |
| 34 | 29 33 | sseqtrd | |- ( ph -> ( N ` { ( X .+ Y ) } ) C_ ( N ` { X } ) ) |
| 35 | 1 2 | lmodvacl | |- ( ( W e. LMod /\ X e. V /\ Y e. V ) -> ( X .+ Y ) e. V ) |
| 36 | 12 6 7 35 | syl3anc | |- ( ph -> ( X .+ Y ) e. V ) |
| 37 | eldifsn | |- ( ( X .+ Y ) e. ( V \ { .0. } ) <-> ( ( X .+ Y ) e. V /\ ( X .+ Y ) =/= .0. ) ) |
|
| 38 | 36 8 37 | sylanbrc | |- ( ph -> ( X .+ Y ) e. ( V \ { .0. } ) ) |
| 39 | 1 3 4 5 38 6 | lspsncmp | |- ( ph -> ( ( N ` { ( X .+ Y ) } ) C_ ( N ` { X } ) <-> ( N ` { ( X .+ Y ) } ) = ( N ` { X } ) ) ) |
| 40 | 34 39 | mpbid | |- ( ph -> ( N ` { ( X .+ Y ) } ) = ( N ` { X } ) ) |
| 41 | 40 | eqcomd | |- ( ph -> ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) |