This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspabs2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lspabs2.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lspabs2.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lspabs2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lspabs2.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lspabs2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lspabs3.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lspabs3.xy | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ≠ 0 ) | ||
| lspabs3.e | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) | ||
| Assertion | lspabs3 | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspabs2.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lspabs2.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lspabs2.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 4 | lspabs2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 5 | lspabs2.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 6 | lspabs2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 7 | lspabs3.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 8 | lspabs3.xy | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ≠ 0 ) | |
| 9 | lspabs3.e | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) | |
| 10 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 11 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 12 | 5 11 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 13 | 1 10 4 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 14 | 12 6 13 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 15 | 1 10 4 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 16 | 12 7 15 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 17 | eqid | ⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) | |
| 18 | 10 17 | lsmcl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 19 | 12 14 16 18 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 20 | 1 4 | lspsnsubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 21 | 12 6 20 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 22 | 9 21 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 23 | 1 4 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 24 | 12 6 23 | syl2anc | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 25 | 1 4 | lspsnid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 26 | 12 7 25 | syl2anc | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 27 | 2 17 | lsmelvali | ⊢ ( ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) → ( 𝑋 + 𝑌 ) ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 28 | 21 22 24 26 27 | syl22anc | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 29 | 10 4 12 19 28 | ellspsn5 | ⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 30 | 9 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 31 | 17 | lsmidm | ⊢ ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 32 | 21 31 | syl | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 33 | 30 32 | eqtr3d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 34 | 29 33 | sseqtrd | ⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
| 35 | 1 2 | lmodvacl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
| 36 | 12 6 7 35 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
| 37 | eldifsn | ⊢ ( ( 𝑋 + 𝑌 ) ∈ ( 𝑉 ∖ { 0 } ) ↔ ( ( 𝑋 + 𝑌 ) ∈ 𝑉 ∧ ( 𝑋 + 𝑌 ) ≠ 0 ) ) | |
| 38 | 36 8 37 | sylanbrc | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝑉 ∖ { 0 } ) ) |
| 39 | 1 3 4 5 38 6 | lspsncmp | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ↔ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 40 | 34 39 | mpbid | ⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 41 | 40 | eqcomd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |