This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two subgroups is a subgroup. (Contributed by NM, 4-Feb-2014) (Proof shortened by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmcom.s | |- .(+) = ( LSSum ` G ) |
|
| Assertion | lsmsubg2 | |- ( ( G e. Abel /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T .(+) U ) e. ( SubGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcom.s | |- .(+) = ( LSSum ` G ) |
|
| 2 | simp2 | |- ( ( G e. Abel /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> T e. ( SubGrp ` G ) ) |
|
| 3 | simp3 | |- ( ( G e. Abel /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> U e. ( SubGrp ` G ) ) |
|
| 4 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 5 | simp1 | |- ( ( G e. Abel /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> G e. Abel ) |
|
| 6 | 4 5 2 3 | ablcntzd | |- ( ( G e. Abel /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> T C_ ( ( Cntz ` G ) ` U ) ) |
| 7 | 1 4 | lsmsubg | |- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( ( Cntz ` G ) ` U ) ) -> ( T .(+) U ) e. ( SubGrp ` G ) ) |
| 8 | 2 3 6 7 | syl3anc | |- ( ( G e. Abel /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T .(+) U ) e. ( SubGrp ` G ) ) |