This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvsinv.b | |- B = ( Base ` W ) |
|
| lmodvsinv.f | |- F = ( Scalar ` W ) |
||
| lmodvsinv.s | |- .x. = ( .s ` W ) |
||
| lmodvsinv.n | |- N = ( invg ` W ) |
||
| lmodvsinv.m | |- M = ( invg ` F ) |
||
| lmodvsinv.k | |- K = ( Base ` F ) |
||
| Assertion | lmodvsinv | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( ( M ` R ) .x. X ) = ( N ` ( R .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsinv.b | |- B = ( Base ` W ) |
|
| 2 | lmodvsinv.f | |- F = ( Scalar ` W ) |
|
| 3 | lmodvsinv.s | |- .x. = ( .s ` W ) |
|
| 4 | lmodvsinv.n | |- N = ( invg ` W ) |
|
| 5 | lmodvsinv.m | |- M = ( invg ` F ) |
|
| 6 | lmodvsinv.k | |- K = ( Base ` F ) |
|
| 7 | simp1 | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> W e. LMod ) |
|
| 8 | 2 | lmodring | |- ( W e. LMod -> F e. Ring ) |
| 9 | 8 | 3ad2ant1 | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> F e. Ring ) |
| 10 | ringgrp | |- ( F e. Ring -> F e. Grp ) |
|
| 11 | 9 10 | syl | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> F e. Grp ) |
| 12 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 13 | 6 12 | ringidcl | |- ( F e. Ring -> ( 1r ` F ) e. K ) |
| 14 | 9 13 | syl | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( 1r ` F ) e. K ) |
| 15 | 6 5 | grpinvcl | |- ( ( F e. Grp /\ ( 1r ` F ) e. K ) -> ( M ` ( 1r ` F ) ) e. K ) |
| 16 | 11 14 15 | syl2anc | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( M ` ( 1r ` F ) ) e. K ) |
| 17 | simp2 | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> R e. K ) |
|
| 18 | simp3 | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> X e. B ) |
|
| 19 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 20 | 1 2 3 6 19 | lmodvsass | |- ( ( W e. LMod /\ ( ( M ` ( 1r ` F ) ) e. K /\ R e. K /\ X e. B ) ) -> ( ( ( M ` ( 1r ` F ) ) ( .r ` F ) R ) .x. X ) = ( ( M ` ( 1r ` F ) ) .x. ( R .x. X ) ) ) |
| 21 | 7 16 17 18 20 | syl13anc | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( ( ( M ` ( 1r ` F ) ) ( .r ` F ) R ) .x. X ) = ( ( M ` ( 1r ` F ) ) .x. ( R .x. X ) ) ) |
| 22 | 6 19 12 5 9 17 | ringnegl | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( ( M ` ( 1r ` F ) ) ( .r ` F ) R ) = ( M ` R ) ) |
| 23 | 22 | oveq1d | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( ( ( M ` ( 1r ` F ) ) ( .r ` F ) R ) .x. X ) = ( ( M ` R ) .x. X ) ) |
| 24 | 1 2 3 6 | lmodvscl | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( R .x. X ) e. B ) |
| 25 | 1 4 2 3 12 5 | lmodvneg1 | |- ( ( W e. LMod /\ ( R .x. X ) e. B ) -> ( ( M ` ( 1r ` F ) ) .x. ( R .x. X ) ) = ( N ` ( R .x. X ) ) ) |
| 26 | 7 24 25 | syl2anc | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( ( M ` ( 1r ` F ) ) .x. ( R .x. X ) ) = ( N ` ( R .x. X ) ) ) |
| 27 | 21 23 26 | 3eqtr3d | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( ( M ` R ) .x. X ) = ( N ` ( R .x. X ) ) ) |