This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplying a negated vector by a scalar. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvsinv2.b | |- B = ( Base ` W ) |
|
| lmodvsinv2.f | |- F = ( Scalar ` W ) |
||
| lmodvsinv2.s | |- .x. = ( .s ` W ) |
||
| lmodvsinv2.n | |- N = ( invg ` W ) |
||
| lmodvsinv2.k | |- K = ( Base ` F ) |
||
| Assertion | lmodvsinv2 | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( R .x. ( N ` X ) ) = ( N ` ( R .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsinv2.b | |- B = ( Base ` W ) |
|
| 2 | lmodvsinv2.f | |- F = ( Scalar ` W ) |
|
| 3 | lmodvsinv2.s | |- .x. = ( .s ` W ) |
|
| 4 | lmodvsinv2.n | |- N = ( invg ` W ) |
|
| 5 | lmodvsinv2.k | |- K = ( Base ` F ) |
|
| 6 | simp1 | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> W e. LMod ) |
|
| 7 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
| 8 | 6 7 | syl | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> W e. Grp ) |
| 9 | simp3 | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> X e. B ) |
|
| 10 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 11 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 12 | 1 10 11 4 | grprinv | |- ( ( W e. Grp /\ X e. B ) -> ( X ( +g ` W ) ( N ` X ) ) = ( 0g ` W ) ) |
| 13 | 8 9 12 | syl2anc | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( X ( +g ` W ) ( N ` X ) ) = ( 0g ` W ) ) |
| 14 | 13 | oveq2d | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( R .x. ( X ( +g ` W ) ( N ` X ) ) ) = ( R .x. ( 0g ` W ) ) ) |
| 15 | simp2 | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> R e. K ) |
|
| 16 | 1 4 | grpinvcl | |- ( ( W e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
| 17 | 8 9 16 | syl2anc | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( N ` X ) e. B ) |
| 18 | 1 10 2 3 5 | lmodvsdi | |- ( ( W e. LMod /\ ( R e. K /\ X e. B /\ ( N ` X ) e. B ) ) -> ( R .x. ( X ( +g ` W ) ( N ` X ) ) ) = ( ( R .x. X ) ( +g ` W ) ( R .x. ( N ` X ) ) ) ) |
| 19 | 6 15 9 17 18 | syl13anc | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( R .x. ( X ( +g ` W ) ( N ` X ) ) ) = ( ( R .x. X ) ( +g ` W ) ( R .x. ( N ` X ) ) ) ) |
| 20 | 2 3 5 11 | lmodvs0 | |- ( ( W e. LMod /\ R e. K ) -> ( R .x. ( 0g ` W ) ) = ( 0g ` W ) ) |
| 21 | 6 15 20 | syl2anc | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( R .x. ( 0g ` W ) ) = ( 0g ` W ) ) |
| 22 | 14 19 21 | 3eqtr3d | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( ( R .x. X ) ( +g ` W ) ( R .x. ( N ` X ) ) ) = ( 0g ` W ) ) |
| 23 | 1 2 3 5 | lmodvscl | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( R .x. X ) e. B ) |
| 24 | 1 2 3 5 | lmodvscl | |- ( ( W e. LMod /\ R e. K /\ ( N ` X ) e. B ) -> ( R .x. ( N ` X ) ) e. B ) |
| 25 | 6 15 17 24 | syl3anc | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( R .x. ( N ` X ) ) e. B ) |
| 26 | 1 10 11 4 | grpinvid1 | |- ( ( W e. Grp /\ ( R .x. X ) e. B /\ ( R .x. ( N ` X ) ) e. B ) -> ( ( N ` ( R .x. X ) ) = ( R .x. ( N ` X ) ) <-> ( ( R .x. X ) ( +g ` W ) ( R .x. ( N ` X ) ) ) = ( 0g ` W ) ) ) |
| 27 | 8 23 25 26 | syl3anc | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( ( N ` ( R .x. X ) ) = ( R .x. ( N ` X ) ) <-> ( ( R .x. X ) ( +g ` W ) ( R .x. ( N ` X ) ) ) = ( 0g ` W ) ) ) |
| 28 | 22 27 | mpbird | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( N ` ( R .x. X ) ) = ( R .x. ( N ` X ) ) ) |
| 29 | 28 | eqcomd | |- ( ( W e. LMod /\ R e. K /\ X e. B ) -> ( R .x. ( N ` X ) ) = ( N ` ( R .x. X ) ) ) |