This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvsinv.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| lmodvsinv.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lmodvsinv.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lmodvsinv.n | ⊢ 𝑁 = ( invg ‘ 𝑊 ) | ||
| lmodvsinv.m | ⊢ 𝑀 = ( invg ‘ 𝐹 ) | ||
| lmodvsinv.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | lmodvsinv | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑅 ) · 𝑋 ) = ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsinv.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | lmodvsinv.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | lmodvsinv.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | lmodvsinv.n | ⊢ 𝑁 = ( invg ‘ 𝑊 ) | |
| 5 | lmodvsinv.m | ⊢ 𝑀 = ( invg ‘ 𝐹 ) | |
| 6 | lmodvsinv.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 7 | simp1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → 𝑊 ∈ LMod ) | |
| 8 | 2 | lmodring | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → 𝐹 ∈ Ring ) |
| 10 | ringgrp | ⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → 𝐹 ∈ Grp ) |
| 12 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 13 | 6 12 | ringidcl | ⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 14 | 9 13 | syl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
| 15 | 6 5 | grpinvcl | ⊢ ( ( 𝐹 ∈ Grp ∧ ( 1r ‘ 𝐹 ) ∈ 𝐾 ) → ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
| 16 | 11 14 15 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ) |
| 17 | simp2 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ 𝐾 ) | |
| 18 | simp3 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 19 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 20 | 1 2 3 6 19 | lmodvsass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝑅 · 𝑋 ) ) ) |
| 21 | 7 16 17 18 20 | syl13anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝑅 · 𝑋 ) ) ) |
| 22 | 6 19 12 5 9 17 | ringnegl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 ) = ( 𝑀 ‘ 𝑅 ) ) |
| 23 | 22 | oveq1d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) ( .r ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑀 ‘ 𝑅 ) · 𝑋 ) ) |
| 24 | 1 2 3 6 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑅 · 𝑋 ) ∈ 𝐵 ) |
| 25 | 1 4 2 3 12 5 | lmodvneg1 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑅 · 𝑋 ) ∈ 𝐵 ) → ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝑅 · 𝑋 ) ) = ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) ) |
| 26 | 7 24 25 | syl2anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ ( 1r ‘ 𝐹 ) ) · ( 𝑅 · 𝑋 ) ) = ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) ) |
| 27 | 21 23 26 | 3eqtr3d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 ‘ 𝑅 ) · 𝑋 ) = ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) ) |