This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A locally compact space is compactly generated. (This variant of llycmpkgen uses the weaker definition of locally compact, "every point has a compact neighborhood", instead of "every point has a local base of compact neighborhoods".) (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iskgen3.1 | |- X = U. J |
|
| llycmpkgen2.2 | |- ( ph -> J e. Top ) |
||
| llycmpkgen2.3 | |- ( ( ph /\ x e. X ) -> E. k e. ( ( nei ` J ) ` { x } ) ( J |`t k ) e. Comp ) |
||
| Assertion | llycmpkgen2 | |- ( ph -> J e. ran kGen ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iskgen3.1 | |- X = U. J |
|
| 2 | llycmpkgen2.2 | |- ( ph -> J e. Top ) |
|
| 3 | llycmpkgen2.3 | |- ( ( ph /\ x e. X ) -> E. k e. ( ( nei ` J ) ` { x } ) ( J |`t k ) e. Comp ) |
|
| 4 | elssuni | |- ( u e. ( kGen ` J ) -> u C_ U. ( kGen ` J ) ) |
|
| 5 | 4 | adantl | |- ( ( ph /\ u e. ( kGen ` J ) ) -> u C_ U. ( kGen ` J ) ) |
| 6 | 1 | kgenuni | |- ( J e. Top -> X = U. ( kGen ` J ) ) |
| 7 | 2 6 | syl | |- ( ph -> X = U. ( kGen ` J ) ) |
| 8 | 7 | adantr | |- ( ( ph /\ u e. ( kGen ` J ) ) -> X = U. ( kGen ` J ) ) |
| 9 | 5 8 | sseqtrrd | |- ( ( ph /\ u e. ( kGen ` J ) ) -> u C_ X ) |
| 10 | 9 | sselda | |- ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) -> x e. X ) |
| 11 | 3 | adantlr | |- ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. X ) -> E. k e. ( ( nei ` J ) ` { x } ) ( J |`t k ) e. Comp ) |
| 12 | 10 11 | syldan | |- ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) -> E. k e. ( ( nei ` J ) ` { x } ) ( J |`t k ) e. Comp ) |
| 13 | 2 | ad3antrrr | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> J e. Top ) |
| 14 | difss | |- ( X \ ( k \ u ) ) C_ X |
|
| 15 | 1 | ntropn | |- ( ( J e. Top /\ ( X \ ( k \ u ) ) C_ X ) -> ( ( int ` J ) ` ( X \ ( k \ u ) ) ) e. J ) |
| 16 | 13 14 15 | sylancl | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( int ` J ) ` ( X \ ( k \ u ) ) ) e. J ) |
| 17 | simprl | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> k e. ( ( nei ` J ) ` { x } ) ) |
|
| 18 | 1 | neii1 | |- ( ( J e. Top /\ k e. ( ( nei ` J ) ` { x } ) ) -> k C_ X ) |
| 19 | 13 17 18 | syl2anc | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> k C_ X ) |
| 20 | 1 | ntropn | |- ( ( J e. Top /\ k C_ X ) -> ( ( int ` J ) ` k ) e. J ) |
| 21 | 13 19 20 | syl2anc | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( int ` J ) ` k ) e. J ) |
| 22 | inopn | |- ( ( J e. Top /\ ( ( int ` J ) ` ( X \ ( k \ u ) ) ) e. J /\ ( ( int ` J ) ` k ) e. J ) -> ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( ( int ` J ) ` k ) ) e. J ) |
|
| 23 | 13 16 21 22 | syl3anc | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( ( int ` J ) ` k ) ) e. J ) |
| 24 | simplr | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> x e. u ) |
|
| 25 | 1 | ntrss2 | |- ( ( J e. Top /\ k C_ X ) -> ( ( int ` J ) ` k ) C_ k ) |
| 26 | 13 19 25 | syl2anc | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( int ` J ) ` k ) C_ k ) |
| 27 | 10 | adantr | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> x e. X ) |
| 28 | 27 | snssd | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> { x } C_ X ) |
| 29 | 1 | neiint | |- ( ( J e. Top /\ { x } C_ X /\ k C_ X ) -> ( k e. ( ( nei ` J ) ` { x } ) <-> { x } C_ ( ( int ` J ) ` k ) ) ) |
| 30 | 13 28 19 29 | syl3anc | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( k e. ( ( nei ` J ) ` { x } ) <-> { x } C_ ( ( int ` J ) ` k ) ) ) |
| 31 | 17 30 | mpbid | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> { x } C_ ( ( int ` J ) ` k ) ) |
| 32 | vex | |- x e. _V |
|
| 33 | 32 | snss | |- ( x e. ( ( int ` J ) ` k ) <-> { x } C_ ( ( int ` J ) ` k ) ) |
| 34 | 31 33 | sylibr | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> x e. ( ( int ` J ) ` k ) ) |
| 35 | 26 34 | sseldd | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> x e. k ) |
| 36 | 24 35 | elind | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> x e. ( u i^i k ) ) |
| 37 | simpllr | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> u e. ( kGen ` J ) ) |
|
| 38 | simprr | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( J |`t k ) e. Comp ) |
|
| 39 | kgeni | |- ( ( u e. ( kGen ` J ) /\ ( J |`t k ) e. Comp ) -> ( u i^i k ) e. ( J |`t k ) ) |
|
| 40 | 37 38 39 | syl2anc | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( u i^i k ) e. ( J |`t k ) ) |
| 41 | vex | |- k e. _V |
|
| 42 | resttop | |- ( ( J e. Top /\ k e. _V ) -> ( J |`t k ) e. Top ) |
|
| 43 | 13 41 42 | sylancl | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( J |`t k ) e. Top ) |
| 44 | inss2 | |- ( u i^i k ) C_ k |
|
| 45 | 1 | restuni | |- ( ( J e. Top /\ k C_ X ) -> k = U. ( J |`t k ) ) |
| 46 | 13 19 45 | syl2anc | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> k = U. ( J |`t k ) ) |
| 47 | 44 46 | sseqtrid | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( u i^i k ) C_ U. ( J |`t k ) ) |
| 48 | eqid | |- U. ( J |`t k ) = U. ( J |`t k ) |
|
| 49 | 48 | isopn3 | |- ( ( ( J |`t k ) e. Top /\ ( u i^i k ) C_ U. ( J |`t k ) ) -> ( ( u i^i k ) e. ( J |`t k ) <-> ( ( int ` ( J |`t k ) ) ` ( u i^i k ) ) = ( u i^i k ) ) ) |
| 50 | 43 47 49 | syl2anc | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( u i^i k ) e. ( J |`t k ) <-> ( ( int ` ( J |`t k ) ) ` ( u i^i k ) ) = ( u i^i k ) ) ) |
| 51 | 40 50 | mpbid | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( int ` ( J |`t k ) ) ` ( u i^i k ) ) = ( u i^i k ) ) |
| 52 | 44 | a1i | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( u i^i k ) C_ k ) |
| 53 | eqid | |- ( J |`t k ) = ( J |`t k ) |
|
| 54 | 1 53 | restntr | |- ( ( J e. Top /\ k C_ X /\ ( u i^i k ) C_ k ) -> ( ( int ` ( J |`t k ) ) ` ( u i^i k ) ) = ( ( ( int ` J ) ` ( ( u i^i k ) u. ( X \ k ) ) ) i^i k ) ) |
| 55 | 13 19 52 54 | syl3anc | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( int ` ( J |`t k ) ) ` ( u i^i k ) ) = ( ( ( int ` J ) ` ( ( u i^i k ) u. ( X \ k ) ) ) i^i k ) ) |
| 56 | 51 55 | eqtr3d | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( u i^i k ) = ( ( ( int ` J ) ` ( ( u i^i k ) u. ( X \ k ) ) ) i^i k ) ) |
| 57 | 36 56 | eleqtrd | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> x e. ( ( ( int ` J ) ` ( ( u i^i k ) u. ( X \ k ) ) ) i^i k ) ) |
| 58 | 57 | elin1d | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> x e. ( ( int ` J ) ` ( ( u i^i k ) u. ( X \ k ) ) ) ) |
| 59 | undif3 | |- ( ( u i^i k ) u. ( X \ k ) ) = ( ( ( u i^i k ) u. X ) \ ( k \ ( u i^i k ) ) ) |
|
| 60 | incom | |- ( u i^i k ) = ( k i^i u ) |
|
| 61 | 60 | difeq2i | |- ( k \ ( u i^i k ) ) = ( k \ ( k i^i u ) ) |
| 62 | difin | |- ( k \ ( k i^i u ) ) = ( k \ u ) |
|
| 63 | 61 62 | eqtri | |- ( k \ ( u i^i k ) ) = ( k \ u ) |
| 64 | 63 | difeq2i | |- ( ( ( u i^i k ) u. X ) \ ( k \ ( u i^i k ) ) ) = ( ( ( u i^i k ) u. X ) \ ( k \ u ) ) |
| 65 | 59 64 | eqtri | |- ( ( u i^i k ) u. ( X \ k ) ) = ( ( ( u i^i k ) u. X ) \ ( k \ u ) ) |
| 66 | 44 19 | sstrid | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( u i^i k ) C_ X ) |
| 67 | ssequn1 | |- ( ( u i^i k ) C_ X <-> ( ( u i^i k ) u. X ) = X ) |
|
| 68 | 66 67 | sylib | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( u i^i k ) u. X ) = X ) |
| 69 | 68 | difeq1d | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( ( u i^i k ) u. X ) \ ( k \ u ) ) = ( X \ ( k \ u ) ) ) |
| 70 | 65 69 | eqtrid | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( u i^i k ) u. ( X \ k ) ) = ( X \ ( k \ u ) ) ) |
| 71 | 70 | fveq2d | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( int ` J ) ` ( ( u i^i k ) u. ( X \ k ) ) ) = ( ( int ` J ) ` ( X \ ( k \ u ) ) ) ) |
| 72 | 58 71 | eleqtrd | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> x e. ( ( int ` J ) ` ( X \ ( k \ u ) ) ) ) |
| 73 | 72 34 | elind | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> x e. ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( ( int ` J ) ` k ) ) ) |
| 74 | sslin | |- ( ( ( int ` J ) ` k ) C_ k -> ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( ( int ` J ) ` k ) ) C_ ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i k ) ) |
|
| 75 | 26 74 | syl | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( ( int ` J ) ` k ) ) C_ ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i k ) ) |
| 76 | 1 | ntrss2 | |- ( ( J e. Top /\ ( X \ ( k \ u ) ) C_ X ) -> ( ( int ` J ) ` ( X \ ( k \ u ) ) ) C_ ( X \ ( k \ u ) ) ) |
| 77 | 13 14 76 | sylancl | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( int ` J ) ` ( X \ ( k \ u ) ) ) C_ ( X \ ( k \ u ) ) ) |
| 78 | 77 | difss2d | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( int ` J ) ` ( X \ ( k \ u ) ) ) C_ X ) |
| 79 | reldisj | |- ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) C_ X -> ( ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( k \ u ) ) = (/) <-> ( ( int ` J ) ` ( X \ ( k \ u ) ) ) C_ ( X \ ( k \ u ) ) ) ) |
|
| 80 | 78 79 | syl | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( k \ u ) ) = (/) <-> ( ( int ` J ) ` ( X \ ( k \ u ) ) ) C_ ( X \ ( k \ u ) ) ) ) |
| 81 | 77 80 | mpbird | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( k \ u ) ) = (/) ) |
| 82 | inssdif0 | |- ( ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i k ) C_ u <-> ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( k \ u ) ) = (/) ) |
|
| 83 | 81 82 | sylibr | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i k ) C_ u ) |
| 84 | 75 83 | sstrd | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( ( int ` J ) ` k ) ) C_ u ) |
| 85 | eleq2 | |- ( z = ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( ( int ` J ) ` k ) ) -> ( x e. z <-> x e. ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( ( int ` J ) ` k ) ) ) ) |
|
| 86 | sseq1 | |- ( z = ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( ( int ` J ) ` k ) ) -> ( z C_ u <-> ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( ( int ` J ) ` k ) ) C_ u ) ) |
|
| 87 | 85 86 | anbi12d | |- ( z = ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( ( int ` J ) ` k ) ) -> ( ( x e. z /\ z C_ u ) <-> ( x e. ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( ( int ` J ) ` k ) ) /\ ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( ( int ` J ) ` k ) ) C_ u ) ) ) |
| 88 | 87 | rspcev | |- ( ( ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( ( int ` J ) ` k ) ) e. J /\ ( x e. ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( ( int ` J ) ` k ) ) /\ ( ( ( int ` J ) ` ( X \ ( k \ u ) ) ) i^i ( ( int ` J ) ` k ) ) C_ u ) ) -> E. z e. J ( x e. z /\ z C_ u ) ) |
| 89 | 23 73 84 88 | syl12anc | |- ( ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) /\ ( k e. ( ( nei ` J ) ` { x } ) /\ ( J |`t k ) e. Comp ) ) -> E. z e. J ( x e. z /\ z C_ u ) ) |
| 90 | 12 89 | rexlimddv | |- ( ( ( ph /\ u e. ( kGen ` J ) ) /\ x e. u ) -> E. z e. J ( x e. z /\ z C_ u ) ) |
| 91 | 90 | ralrimiva | |- ( ( ph /\ u e. ( kGen ` J ) ) -> A. x e. u E. z e. J ( x e. z /\ z C_ u ) ) |
| 92 | 91 | ex | |- ( ph -> ( u e. ( kGen ` J ) -> A. x e. u E. z e. J ( x e. z /\ z C_ u ) ) ) |
| 93 | eltop2 | |- ( J e. Top -> ( u e. J <-> A. x e. u E. z e. J ( x e. z /\ z C_ u ) ) ) |
|
| 94 | 2 93 | syl | |- ( ph -> ( u e. J <-> A. x e. u E. z e. J ( x e. z /\ z C_ u ) ) ) |
| 95 | 92 94 | sylibrd | |- ( ph -> ( u e. ( kGen ` J ) -> u e. J ) ) |
| 96 | 95 | ssrdv | |- ( ph -> ( kGen ` J ) C_ J ) |
| 97 | iskgen2 | |- ( J e. ran kGen <-> ( J e. Top /\ ( kGen ` J ) C_ J ) ) |
|
| 98 | 2 96 97 | sylanbrc | |- ( ph -> J e. ran kGen ) |