This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | neifval.1 | |- X = U. J |
|
| Assertion | neiint | |- ( ( J e. Top /\ S C_ X /\ N C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> S C_ ( ( int ` J ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neifval.1 | |- X = U. J |
|
| 2 | 1 | isnei | |- ( ( J e. Top /\ S C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. v e. J ( S C_ v /\ v C_ N ) ) ) ) |
| 3 | 2 | 3adant3 | |- ( ( J e. Top /\ S C_ X /\ N C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> ( N C_ X /\ E. v e. J ( S C_ v /\ v C_ N ) ) ) ) |
| 4 | 3 | 3anibar | |- ( ( J e. Top /\ S C_ X /\ N C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> E. v e. J ( S C_ v /\ v C_ N ) ) ) |
| 5 | simprrl | |- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ ( v e. J /\ ( S C_ v /\ v C_ N ) ) ) -> S C_ v ) |
|
| 6 | 1 | ssntr | |- ( ( ( J e. Top /\ N C_ X ) /\ ( v e. J /\ v C_ N ) ) -> v C_ ( ( int ` J ) ` N ) ) |
| 7 | 6 | 3adantl2 | |- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ ( v e. J /\ v C_ N ) ) -> v C_ ( ( int ` J ) ` N ) ) |
| 8 | 7 | adantrrl | |- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ ( v e. J /\ ( S C_ v /\ v C_ N ) ) ) -> v C_ ( ( int ` J ) ` N ) ) |
| 9 | 5 8 | sstrd | |- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ ( v e. J /\ ( S C_ v /\ v C_ N ) ) ) -> S C_ ( ( int ` J ) ` N ) ) |
| 10 | 9 | rexlimdvaa | |- ( ( J e. Top /\ S C_ X /\ N C_ X ) -> ( E. v e. J ( S C_ v /\ v C_ N ) -> S C_ ( ( int ` J ) ` N ) ) ) |
| 11 | simpl1 | |- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ S C_ ( ( int ` J ) ` N ) ) -> J e. Top ) |
|
| 12 | simpl3 | |- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ S C_ ( ( int ` J ) ` N ) ) -> N C_ X ) |
|
| 13 | 1 | ntropn | |- ( ( J e. Top /\ N C_ X ) -> ( ( int ` J ) ` N ) e. J ) |
| 14 | 11 12 13 | syl2anc | |- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ S C_ ( ( int ` J ) ` N ) ) -> ( ( int ` J ) ` N ) e. J ) |
| 15 | simpr | |- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ S C_ ( ( int ` J ) ` N ) ) -> S C_ ( ( int ` J ) ` N ) ) |
|
| 16 | 1 | ntrss2 | |- ( ( J e. Top /\ N C_ X ) -> ( ( int ` J ) ` N ) C_ N ) |
| 17 | 11 12 16 | syl2anc | |- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ S C_ ( ( int ` J ) ` N ) ) -> ( ( int ` J ) ` N ) C_ N ) |
| 18 | sseq2 | |- ( v = ( ( int ` J ) ` N ) -> ( S C_ v <-> S C_ ( ( int ` J ) ` N ) ) ) |
|
| 19 | sseq1 | |- ( v = ( ( int ` J ) ` N ) -> ( v C_ N <-> ( ( int ` J ) ` N ) C_ N ) ) |
|
| 20 | 18 19 | anbi12d | |- ( v = ( ( int ` J ) ` N ) -> ( ( S C_ v /\ v C_ N ) <-> ( S C_ ( ( int ` J ) ` N ) /\ ( ( int ` J ) ` N ) C_ N ) ) ) |
| 21 | 20 | rspcev | |- ( ( ( ( int ` J ) ` N ) e. J /\ ( S C_ ( ( int ` J ) ` N ) /\ ( ( int ` J ) ` N ) C_ N ) ) -> E. v e. J ( S C_ v /\ v C_ N ) ) |
| 22 | 14 15 17 21 | syl12anc | |- ( ( ( J e. Top /\ S C_ X /\ N C_ X ) /\ S C_ ( ( int ` J ) ` N ) ) -> E. v e. J ( S C_ v /\ v C_ N ) ) |
| 23 | 22 | ex | |- ( ( J e. Top /\ S C_ X /\ N C_ X ) -> ( S C_ ( ( int ` J ) ` N ) -> E. v e. J ( S C_ v /\ v C_ N ) ) ) |
| 24 | 10 23 | impbid | |- ( ( J e. Top /\ S C_ X /\ N C_ X ) -> ( E. v e. J ( S C_ v /\ v C_ N ) <-> S C_ ( ( int ` J ) ` N ) ) ) |
| 25 | 4 24 | bitrd | |- ( ( J e. Top /\ S C_ X /\ N C_ X ) -> ( N e. ( ( nei ` J ) ` S ) <-> S C_ ( ( int ` J ) ` N ) ) ) |