This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for leordtval . (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | leordtval.1 | |- A = ran ( x e. RR* |-> ( x (,] +oo ) ) |
|
| Assertion | leordtvallem1 | |- A = ran ( x e. RR* |-> { y e. RR* | -. y <_ x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leordtval.1 | |- A = ran ( x e. RR* |-> ( x (,] +oo ) ) |
|
| 2 | iocssxr | |- ( x (,] +oo ) C_ RR* |
|
| 3 | sseqin2 | |- ( ( x (,] +oo ) C_ RR* <-> ( RR* i^i ( x (,] +oo ) ) = ( x (,] +oo ) ) |
|
| 4 | 2 3 | mpbi | |- ( RR* i^i ( x (,] +oo ) ) = ( x (,] +oo ) |
| 5 | simpl | |- ( ( x e. RR* /\ y e. RR* ) -> x e. RR* ) |
|
| 6 | pnfxr | |- +oo e. RR* |
|
| 7 | elioc1 | |- ( ( x e. RR* /\ +oo e. RR* ) -> ( y e. ( x (,] +oo ) <-> ( y e. RR* /\ x < y /\ y <_ +oo ) ) ) |
|
| 8 | 5 6 7 | sylancl | |- ( ( x e. RR* /\ y e. RR* ) -> ( y e. ( x (,] +oo ) <-> ( y e. RR* /\ x < y /\ y <_ +oo ) ) ) |
| 9 | simpr | |- ( ( x e. RR* /\ y e. RR* ) -> y e. RR* ) |
|
| 10 | pnfge | |- ( y e. RR* -> y <_ +oo ) |
|
| 11 | 9 10 | jccir | |- ( ( x e. RR* /\ y e. RR* ) -> ( y e. RR* /\ y <_ +oo ) ) |
| 12 | 11 | biantrurd | |- ( ( x e. RR* /\ y e. RR* ) -> ( x < y <-> ( ( y e. RR* /\ y <_ +oo ) /\ x < y ) ) ) |
| 13 | 3anan32 | |- ( ( y e. RR* /\ x < y /\ y <_ +oo ) <-> ( ( y e. RR* /\ y <_ +oo ) /\ x < y ) ) |
|
| 14 | 12 13 | bitr4di | |- ( ( x e. RR* /\ y e. RR* ) -> ( x < y <-> ( y e. RR* /\ x < y /\ y <_ +oo ) ) ) |
| 15 | xrltnle | |- ( ( x e. RR* /\ y e. RR* ) -> ( x < y <-> -. y <_ x ) ) |
|
| 16 | 8 14 15 | 3bitr2d | |- ( ( x e. RR* /\ y e. RR* ) -> ( y e. ( x (,] +oo ) <-> -. y <_ x ) ) |
| 17 | 16 | rabbi2dva | |- ( x e. RR* -> ( RR* i^i ( x (,] +oo ) ) = { y e. RR* | -. y <_ x } ) |
| 18 | 4 17 | eqtr3id | |- ( x e. RR* -> ( x (,] +oo ) = { y e. RR* | -. y <_ x } ) |
| 19 | 18 | mpteq2ia | |- ( x e. RR* |-> ( x (,] +oo ) ) = ( x e. RR* |-> { y e. RR* | -. y <_ x } ) |
| 20 | 19 | rneqi | |- ran ( x e. RR* |-> ( x (,] +oo ) ) = ran ( x e. RR* |-> { y e. RR* | -. y <_ x } ) |
| 21 | 1 20 | eqtri | |- A = ran ( x e. RR* |-> { y e. RR* | -. y <_ x } ) |