This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for leordtval . (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leordtval.1 | |- A = ran ( x e. RR* |-> ( x (,] +oo ) ) |
|
| leordtval.2 | |- B = ran ( x e. RR* |-> ( -oo [,) x ) ) |
||
| Assertion | leordtvallem2 | |- B = ran ( x e. RR* |-> { y e. RR* | -. x <_ y } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leordtval.1 | |- A = ran ( x e. RR* |-> ( x (,] +oo ) ) |
|
| 2 | leordtval.2 | |- B = ran ( x e. RR* |-> ( -oo [,) x ) ) |
|
| 3 | icossxr | |- ( -oo [,) x ) C_ RR* |
|
| 4 | sseqin2 | |- ( ( -oo [,) x ) C_ RR* <-> ( RR* i^i ( -oo [,) x ) ) = ( -oo [,) x ) ) |
|
| 5 | 3 4 | mpbi | |- ( RR* i^i ( -oo [,) x ) ) = ( -oo [,) x ) |
| 6 | mnfxr | |- -oo e. RR* |
|
| 7 | simpl | |- ( ( x e. RR* /\ y e. RR* ) -> x e. RR* ) |
|
| 8 | elico1 | |- ( ( -oo e. RR* /\ x e. RR* ) -> ( y e. ( -oo [,) x ) <-> ( y e. RR* /\ -oo <_ y /\ y < x ) ) ) |
|
| 9 | 6 7 8 | sylancr | |- ( ( x e. RR* /\ y e. RR* ) -> ( y e. ( -oo [,) x ) <-> ( y e. RR* /\ -oo <_ y /\ y < x ) ) ) |
| 10 | simpr | |- ( ( x e. RR* /\ y e. RR* ) -> y e. RR* ) |
|
| 11 | mnfle | |- ( y e. RR* -> -oo <_ y ) |
|
| 12 | 10 11 | jccir | |- ( ( x e. RR* /\ y e. RR* ) -> ( y e. RR* /\ -oo <_ y ) ) |
| 13 | 12 | biantrurd | |- ( ( x e. RR* /\ y e. RR* ) -> ( y < x <-> ( ( y e. RR* /\ -oo <_ y ) /\ y < x ) ) ) |
| 14 | df-3an | |- ( ( y e. RR* /\ -oo <_ y /\ y < x ) <-> ( ( y e. RR* /\ -oo <_ y ) /\ y < x ) ) |
|
| 15 | 13 14 | bitr4di | |- ( ( x e. RR* /\ y e. RR* ) -> ( y < x <-> ( y e. RR* /\ -oo <_ y /\ y < x ) ) ) |
| 16 | xrltnle | |- ( ( y e. RR* /\ x e. RR* ) -> ( y < x <-> -. x <_ y ) ) |
|
| 17 | 16 | ancoms | |- ( ( x e. RR* /\ y e. RR* ) -> ( y < x <-> -. x <_ y ) ) |
| 18 | 9 15 17 | 3bitr2d | |- ( ( x e. RR* /\ y e. RR* ) -> ( y e. ( -oo [,) x ) <-> -. x <_ y ) ) |
| 19 | 18 | rabbi2dva | |- ( x e. RR* -> ( RR* i^i ( -oo [,) x ) ) = { y e. RR* | -. x <_ y } ) |
| 20 | 5 19 | eqtr3id | |- ( x e. RR* -> ( -oo [,) x ) = { y e. RR* | -. x <_ y } ) |
| 21 | 20 | mpteq2ia | |- ( x e. RR* |-> ( -oo [,) x ) ) = ( x e. RR* |-> { y e. RR* | -. x <_ y } ) |
| 22 | 21 | rneqi | |- ran ( x e. RR* |-> ( -oo [,) x ) ) = ran ( x e. RR* |-> { y e. RR* | -. x <_ y } ) |
| 23 | 2 22 | eqtri | |- B = ran ( x e. RR* |-> { y e. RR* | -. x <_ y } ) |