This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| Assertion | elixx1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A O B ) <-> ( C e. RR* /\ A R C /\ C S B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| 2 | 1 | ixxval | |- ( ( A e. RR* /\ B e. RR* ) -> ( A O B ) = { z e. RR* | ( A R z /\ z S B ) } ) |
| 3 | 2 | eleq2d | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A O B ) <-> C e. { z e. RR* | ( A R z /\ z S B ) } ) ) |
| 4 | breq2 | |- ( z = C -> ( A R z <-> A R C ) ) |
|
| 5 | breq1 | |- ( z = C -> ( z S B <-> C S B ) ) |
|
| 6 | 4 5 | anbi12d | |- ( z = C -> ( ( A R z /\ z S B ) <-> ( A R C /\ C S B ) ) ) |
| 7 | 6 | elrab | |- ( C e. { z e. RR* | ( A R z /\ z S B ) } <-> ( C e. RR* /\ ( A R C /\ C S B ) ) ) |
| 8 | 3anass | |- ( ( C e. RR* /\ A R C /\ C S B ) <-> ( C e. RR* /\ ( A R C /\ C S B ) ) ) |
|
| 9 | 7 8 | bitr4i | |- ( C e. { z e. RR* | ( A R z /\ z S B ) } <-> ( C e. RR* /\ A R C /\ C S B ) ) |
| 10 | 3 9 | bitrdi | |- ( ( A e. RR* /\ B e. RR* ) -> ( C e. ( A O B ) <-> ( C e. RR* /\ A R C /\ C S B ) ) ) |