This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integration by u-substitution. The main difference with respect to itgsubst is that here we consider the range of A ( x ) to be in the closed interval ( K , L ) . If A ( x ) is a continuous, differentiable function from [ X , Y ] to ( Z , W ) , whose derivative is continuous and integrable, and C ( u ) is a continuous function on ( Z , W ) , then the integral of C ( u ) from K = A ( X ) to L = A ( Y ) is equal to the integral of C ( A ( x ) ) _D A ( x ) from X to Y . (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgsubsticc.1 | ||
| itgsubsticc.2 | |||
| itgsubsticc.3 | |||
| itgsubsticc.4 | |||
| itgsubsticc.5 | |||
| itgsubsticc.6 | |||
| itgsubsticc.7 | |||
| itgsubsticc.8 | |||
| itgsubsticc.9 | |||
| itgsubsticc.10 | |||
| itgsubsticc.11 | |||
| itgsubsticc.12 | |||
| Assertion | itgsubsticc |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgsubsticc.1 | ||
| 2 | itgsubsticc.2 | ||
| 3 | itgsubsticc.3 | ||
| 4 | itgsubsticc.4 | ||
| 5 | itgsubsticc.5 | ||
| 6 | itgsubsticc.6 | ||
| 7 | itgsubsticc.7 | ||
| 8 | itgsubsticc.8 | ||
| 9 | itgsubsticc.9 | ||
| 10 | itgsubsticc.10 | ||
| 11 | itgsubsticc.11 | ||
| 12 | itgsubsticc.12 | ||
| 13 | eqid | ||
| 14 | eqid | ||
| 15 | eqidd | ||
| 16 | 10 | adantl | |
| 17 | 1 | rexrd | |
| 18 | 2 | rexrd | |
| 19 | ubicc2 | ||
| 20 | 17 18 3 19 | syl3anc | |
| 21 | 15 16 20 12 | fvmptd | |
| 22 | cncff | ||
| 23 | 4 22 | syl | |
| 24 | 23 20 | ffvelcdmd | |
| 25 | 21 24 | eqeltrrd | |
| 26 | elicc2 | ||
| 27 | 11 12 26 | syl2anc | |
| 28 | 25 27 | mpbid | |
| 29 | 28 | simp2d | |
| 30 | 13 14 1 2 3 4 6 5 11 12 29 7 8 9 10 | itgsubsticclem |