This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a piecewise continuous function F on an open interval is equal to the integral of the continuous function G , in the corresponding closed interval. G is equal to F on the open interval, but it is continuous at the two boundaries, also. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgioocnicc.a | |- ( ph -> A e. RR ) |
|
| itgioocnicc.b | |- ( ph -> B e. RR ) |
||
| itgioocnicc.f | |- ( ph -> F : dom F --> CC ) |
||
| itgioocnicc.fcn | |- ( ph -> ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
||
| itgioocnicc.fdom | |- ( ph -> ( A [,] B ) C_ dom F ) |
||
| itgioocnicc.r | |- ( ph -> R e. ( ( F |` ( A (,) B ) ) limCC A ) ) |
||
| itgioocnicc.l | |- ( ph -> L e. ( ( F |` ( A (,) B ) ) limCC B ) ) |
||
| itgioocnicc.g | |- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
||
| Assertion | itgioocnicc | |- ( ph -> ( G e. L^1 /\ S. ( A [,] B ) ( G ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgioocnicc.a | |- ( ph -> A e. RR ) |
|
| 2 | itgioocnicc.b | |- ( ph -> B e. RR ) |
|
| 3 | itgioocnicc.f | |- ( ph -> F : dom F --> CC ) |
|
| 4 | itgioocnicc.fcn | |- ( ph -> ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
|
| 5 | itgioocnicc.fdom | |- ( ph -> ( A [,] B ) C_ dom F ) |
|
| 6 | itgioocnicc.r | |- ( ph -> R e. ( ( F |` ( A (,) B ) ) limCC A ) ) |
|
| 7 | itgioocnicc.l | |- ( ph -> L e. ( ( F |` ( A (,) B ) ) limCC B ) ) |
|
| 8 | itgioocnicc.g | |- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
|
| 9 | iftrue | |- ( x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
|
| 10 | iftrue | |- ( x = A -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = R ) |
|
| 11 | 9 10 | eqtr4d | |- ( x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 12 | 11 | adantl | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 13 | iftrue | |- ( x = B -> if ( x = B , L , ( F ` x ) ) = L ) |
|
| 14 | iftrue | |- ( x = B -> if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) = L ) |
|
| 15 | 13 14 | eqtr4d | |- ( x = B -> if ( x = B , L , ( F ` x ) ) = if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) |
| 16 | 15 | adantl | |- ( ( -. x = A /\ x = B ) -> if ( x = B , L , ( F ` x ) ) = if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) |
| 17 | 16 | ifeq2d | |- ( ( -. x = A /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 18 | 17 | adantll | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 19 | iffalse | |- ( -. x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
|
| 20 | 19 | ad2antlr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
| 21 | iffalse | |- ( -. x = B -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
|
| 22 | 21 | adantl | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
| 23 | iffalse | |- ( -. x = A -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) |
|
| 24 | 23 | ad2antlr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) |
| 25 | iffalse | |- ( -. x = B -> if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) = ( ( F |` ( A (,) B ) ) ` x ) ) |
|
| 26 | 25 | adantl | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) = ( ( F |` ( A (,) B ) ) ` x ) ) |
| 27 | 1 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR ) |
| 28 | 27 | rexrd | |- ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR* ) |
| 29 | 28 | ad2antrr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A e. RR* ) |
| 30 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 31 | 30 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> B e. RR* ) |
| 32 | 2 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) |
| 33 | simpr | |- ( ( ph /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) ) |
|
| 34 | eliccre | |- ( ( A e. RR /\ B e. RR /\ x e. ( A [,] B ) ) -> x e. RR ) |
|
| 35 | 27 32 33 34 | syl3anc | |- ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR ) |
| 36 | 35 | ad2antrr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. RR ) |
| 37 | 1 | ad2antrr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A e. RR ) |
| 38 | 35 | adantr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x e. RR ) |
| 39 | 30 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR* ) |
| 40 | iccgelb | |- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> A <_ x ) |
|
| 41 | 28 39 33 40 | syl3anc | |- ( ( ph /\ x e. ( A [,] B ) ) -> A <_ x ) |
| 42 | 41 | adantr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A <_ x ) |
| 43 | neqne | |- ( -. x = A -> x =/= A ) |
|
| 44 | 43 | adantl | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x =/= A ) |
| 45 | 37 38 42 44 | leneltd | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A < x ) |
| 46 | 45 | adantr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A < x ) |
| 47 | 35 | adantr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x e. RR ) |
| 48 | 2 | ad2antrr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B e. RR ) |
| 49 | iccleub | |- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,] B ) ) -> x <_ B ) |
|
| 50 | 28 39 33 49 | syl3anc | |- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) |
| 51 | 50 | adantr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x <_ B ) |
| 52 | eqcom | |- ( x = B <-> B = x ) |
|
| 53 | 52 | notbii | |- ( -. x = B <-> -. B = x ) |
| 54 | 53 | biimpi | |- ( -. x = B -> -. B = x ) |
| 55 | 54 | neqned | |- ( -. x = B -> B =/= x ) |
| 56 | 55 | adantl | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B =/= x ) |
| 57 | 47 48 51 56 | leneltd | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x < B ) |
| 58 | 57 | adantlr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x < B ) |
| 59 | 29 31 36 46 58 | eliood | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( A (,) B ) ) |
| 60 | fvres | |- ( x e. ( A (,) B ) -> ( ( F |` ( A (,) B ) ) ` x ) = ( F ` x ) ) |
|
| 61 | 59 60 | syl | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( ( F |` ( A (,) B ) ) ` x ) = ( F ` x ) ) |
| 62 | 24 26 61 | 3eqtrrd | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F ` x ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 63 | 20 22 62 | 3eqtrd | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 64 | 18 63 | pm2.61dan | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 65 | 12 64 | pm2.61dan | |- ( ( ph /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
| 66 | 65 | mpteq2dva | |- ( ph -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) ) |
| 67 | 8 66 | eqtrid | |- ( ph -> G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) ) |
| 68 | nfv | |- F/ x ph |
|
| 69 | eqid | |- ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
|
| 70 | 68 69 1 2 4 7 6 | cncfiooicc | |- ( ph -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 71 | 67 70 | eqeltrd | |- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |
| 72 | cniccibl | |- ( ( A e. RR /\ B e. RR /\ G e. ( ( A [,] B ) -cn-> CC ) ) -> G e. L^1 ) |
|
| 73 | 1 2 71 72 | syl3anc | |- ( ph -> G e. L^1 ) |
| 74 | 9 | adantl | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
| 75 | limccl | |- ( ( F |` ( A (,) B ) ) limCC A ) C_ CC |
|
| 76 | 75 6 | sselid | |- ( ph -> R e. CC ) |
| 77 | 76 | ad2antrr | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> R e. CC ) |
| 78 | 74 77 | eqeltrd | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 79 | 19 13 | sylan9eq | |- ( ( -. x = A /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = L ) |
| 80 | 79 | adantll | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = L ) |
| 81 | limccl | |- ( ( F |` ( A (,) B ) ) limCC B ) C_ CC |
|
| 82 | 81 7 | sselid | |- ( ph -> L e. CC ) |
| 83 | 82 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> L e. CC ) |
| 84 | 80 83 | eqeltrd | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 85 | 19 21 | sylan9eq | |- ( ( -. x = A /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) ) |
| 86 | 85 | adantll | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` x ) ) |
| 87 | 61 | eqcomd | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F ` x ) = ( ( F |` ( A (,) B ) ) ` x ) ) |
| 88 | cncff | |- ( ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> CC ) -> ( F |` ( A (,) B ) ) : ( A (,) B ) --> CC ) |
|
| 89 | 4 88 | syl | |- ( ph -> ( F |` ( A (,) B ) ) : ( A (,) B ) --> CC ) |
| 90 | 89 | ad3antrrr | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F |` ( A (,) B ) ) : ( A (,) B ) --> CC ) |
| 91 | 90 59 | ffvelcdmd | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( ( F |` ( A (,) B ) ) ` x ) e. CC ) |
| 92 | 87 91 | eqeltrd | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( F ` x ) e. CC ) |
| 93 | 86 92 | eqeltrd | |- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 94 | 84 93 | pm2.61dan | |- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 95 | 78 94 | pm2.61dan | |- ( ( ph /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) |
| 96 | 8 | fvmpt2 | |- ( ( x e. ( A [,] B ) /\ if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) e. CC ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 97 | 33 95 96 | syl2anc | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 98 | 97 95 | eqeltrd | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( G ` x ) e. CC ) |
| 99 | 1 2 98 | itgioo | |- ( ph -> S. ( A (,) B ) ( G ` x ) _d x = S. ( A [,] B ) ( G ` x ) _d x ) |
| 100 | 99 | eqcomd | |- ( ph -> S. ( A [,] B ) ( G ` x ) _d x = S. ( A (,) B ) ( G ` x ) _d x ) |
| 101 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 102 | 101 | sseli | |- ( x e. ( A (,) B ) -> x e. ( A [,] B ) ) |
| 103 | 102 97 | sylan2 | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( G ` x ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
| 104 | 1 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> A e. RR ) |
| 105 | eliooord | |- ( x e. ( A (,) B ) -> ( A < x /\ x < B ) ) |
|
| 106 | 105 | simpld | |- ( x e. ( A (,) B ) -> A < x ) |
| 107 | 106 | adantl | |- ( ( ph /\ x e. ( A (,) B ) ) -> A < x ) |
| 108 | 104 107 | gtned | |- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= A ) |
| 109 | 108 | neneqd | |- ( ( ph /\ x e. ( A (,) B ) ) -> -. x = A ) |
| 110 | 109 19 | syl | |- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
| 111 | 102 35 | sylan2 | |- ( ( ph /\ x e. ( A (,) B ) ) -> x e. RR ) |
| 112 | 105 | simprd | |- ( x e. ( A (,) B ) -> x < B ) |
| 113 | 112 | adantl | |- ( ( ph /\ x e. ( A (,) B ) ) -> x < B ) |
| 114 | 111 113 | ltned | |- ( ( ph /\ x e. ( A (,) B ) ) -> x =/= B ) |
| 115 | 114 | neneqd | |- ( ( ph /\ x e. ( A (,) B ) ) -> -. x = B ) |
| 116 | 115 21 | syl | |- ( ( ph /\ x e. ( A (,) B ) ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
| 117 | 103 110 116 | 3eqtrd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( G ` x ) = ( F ` x ) ) |
| 118 | 117 | itgeq2dv | |- ( ph -> S. ( A (,) B ) ( G ` x ) _d x = S. ( A (,) B ) ( F ` x ) _d x ) |
| 119 | 3 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> F : dom F --> CC ) |
| 120 | 5 | sselda | |- ( ( ph /\ x e. ( A [,] B ) ) -> x e. dom F ) |
| 121 | 119 120 | ffvelcdmd | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) |
| 122 | 1 2 121 | itgioo | |- ( ph -> S. ( A (,) B ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 123 | 100 118 122 | 3eqtrd | |- ( ph -> S. ( A [,] B ) ( G ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 124 | 73 123 | jca | |- ( ph -> ( G e. L^1 /\ S. ( A [,] B ) ( G ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) ) |