This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofref.1 | |- ( ph -> A e. V ) |
|
| caofref.2 | |- ( ph -> F : A --> S ) |
||
| caofref.3 | |- ( ( ph /\ x e. S ) -> x R x ) |
||
| Assertion | caofref | |- ( ph -> F oR R F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | |- ( ph -> A e. V ) |
|
| 2 | caofref.2 | |- ( ph -> F : A --> S ) |
|
| 3 | caofref.3 | |- ( ( ph /\ x e. S ) -> x R x ) |
|
| 4 | id | |- ( x = ( F ` w ) -> x = ( F ` w ) ) |
|
| 5 | 4 4 | breq12d | |- ( x = ( F ` w ) -> ( x R x <-> ( F ` w ) R ( F ` w ) ) ) |
| 6 | 3 | ralrimiva | |- ( ph -> A. x e. S x R x ) |
| 7 | 6 | adantr | |- ( ( ph /\ w e. A ) -> A. x e. S x R x ) |
| 8 | 2 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) |
| 9 | 5 7 8 | rspcdva | |- ( ( ph /\ w e. A ) -> ( F ` w ) R ( F ` w ) ) |
| 10 | 9 | ralrimiva | |- ( ph -> A. w e. A ( F ` w ) R ( F ` w ) ) |
| 11 | 2 | ffnd | |- ( ph -> F Fn A ) |
| 12 | inidm | |- ( A i^i A ) = A |
|
| 13 | eqidd | |- ( ( ph /\ w e. A ) -> ( F ` w ) = ( F ` w ) ) |
|
| 14 | 11 11 1 1 12 13 13 | ofrfval | |- ( ph -> ( F oR R F <-> A. w e. A ( F ` w ) R ( F ` w ) ) ) |
| 15 | 10 14 | mpbird | |- ( ph -> F oR R F ) |