This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumnn0nn.1 | |- ( k = 0 -> A = B ) |
|
| isumnn0nn.2 | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = A ) |
||
| isumnn0nn.3 | |- ( ( ph /\ k e. NN0 ) -> A e. CC ) |
||
| isumnn0nn.4 | |- ( ph -> seq 0 ( + , F ) e. dom ~~> ) |
||
| Assertion | isumnn0nn | |- ( ph -> sum_ k e. NN0 A = ( B + sum_ k e. NN A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumnn0nn.1 | |- ( k = 0 -> A = B ) |
|
| 2 | isumnn0nn.2 | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = A ) |
|
| 3 | isumnn0nn.3 | |- ( ( ph /\ k e. NN0 ) -> A e. CC ) |
|
| 4 | isumnn0nn.4 | |- ( ph -> seq 0 ( + , F ) e. dom ~~> ) |
|
| 5 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 6 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 7 | 5 6 2 3 4 | isum1p | |- ( ph -> sum_ k e. NN0 A = ( ( F ` 0 ) + sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) A ) ) |
| 8 | fveq2 | |- ( k = 0 -> ( F ` k ) = ( F ` 0 ) ) |
|
| 9 | 8 1 | eqeq12d | |- ( k = 0 -> ( ( F ` k ) = A <-> ( F ` 0 ) = B ) ) |
| 10 | 2 | ralrimiva | |- ( ph -> A. k e. NN0 ( F ` k ) = A ) |
| 11 | 0nn0 | |- 0 e. NN0 |
|
| 12 | 11 | a1i | |- ( ph -> 0 e. NN0 ) |
| 13 | 9 10 12 | rspcdva | |- ( ph -> ( F ` 0 ) = B ) |
| 14 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 15 | 14 | fveq2i | |- ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) |
| 16 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 17 | 15 16 | eqtr4i | |- ( ZZ>= ` ( 0 + 1 ) ) = NN |
| 18 | 17 | sumeq1i | |- sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) A = sum_ k e. NN A |
| 19 | 18 | a1i | |- ( ph -> sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) A = sum_ k e. NN A ) |
| 20 | 13 19 | oveq12d | |- ( ph -> ( ( F ` 0 ) + sum_ k e. ( ZZ>= ` ( 0 + 1 ) ) A ) = ( B + sum_ k e. NN A ) ) |
| 21 | 7 20 | eqtrd | |- ( ph -> sum_ k e. NN0 A = ( B + sum_ k e. NN A ) ) |