This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The edges of an induced subgraph. (Contributed by AV, 12-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isubgriedg.v | |- V = ( Vtx ` G ) |
|
| isubgriedg.e | |- E = ( iEdg ` G ) |
||
| Assertion | isubgriedg | |- ( ( G e. W /\ S C_ V ) -> ( iEdg ` ( G ISubGr S ) ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgriedg.v | |- V = ( Vtx ` G ) |
|
| 2 | isubgriedg.e | |- E = ( iEdg ` G ) |
|
| 3 | 1 2 | isisubgr | |- ( ( G e. W /\ S C_ V ) -> ( G ISubGr S ) = <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. ) |
| 4 | 3 | fveq2d | |- ( ( G e. W /\ S C_ V ) -> ( iEdg ` ( G ISubGr S ) ) = ( iEdg ` <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. ) ) |
| 5 | 1 | fvexi | |- V e. _V |
| 6 | 5 | ssex | |- ( S C_ V -> S e. _V ) |
| 7 | 2 | fvexi | |- E e. _V |
| 8 | 7 | a1i | |- ( ( G e. W /\ S C_ V ) -> E e. _V ) |
| 9 | 8 | resexd | |- ( ( G e. W /\ S C_ V ) -> ( E |` { x e. dom E | ( E ` x ) C_ S } ) e. _V ) |
| 10 | opiedgfv | |- ( ( S e. _V /\ ( E |` { x e. dom E | ( E ` x ) C_ S } ) e. _V ) -> ( iEdg ` <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) |
|
| 11 | 6 9 10 | syl2an2 | |- ( ( G e. W /\ S C_ V ) -> ( iEdg ` <. S , ( E |` { x e. dom E | ( E ` x ) C_ S } ) >. ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) |
| 12 | 4 11 | eqtrd | |- ( ( G e. W /\ S C_ V ) -> ( iEdg ` ( G ISubGr S ) ) = ( E |` { x e. dom E | ( E ` x ) C_ S } ) ) |