This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertices of an induced subgraph. (Contributed by AV, 12-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isubgrvtx.v | |- V = ( Vtx ` G ) |
|
| Assertion | isubgrvtx | |- ( ( G e. W /\ S C_ V ) -> ( Vtx ` ( G ISubGr S ) ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgrvtx.v | |- V = ( Vtx ` G ) |
|
| 2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 3 | 1 2 | isisubgr | |- ( ( G e. W /\ S C_ V ) -> ( G ISubGr S ) = <. S , ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) >. ) |
| 4 | 3 | fveq2d | |- ( ( G e. W /\ S C_ V ) -> ( Vtx ` ( G ISubGr S ) ) = ( Vtx ` <. S , ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) >. ) ) |
| 5 | 1 | fvexi | |- V e. _V |
| 6 | 5 | ssex | |- ( S C_ V -> S e. _V ) |
| 7 | fvexd | |- ( ( G e. W /\ S C_ V ) -> ( iEdg ` G ) e. _V ) |
|
| 8 | 7 | resexd | |- ( ( G e. W /\ S C_ V ) -> ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) e. _V ) |
| 9 | opvtxfv | |- ( ( S e. _V /\ ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) e. _V ) -> ( Vtx ` <. S , ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) >. ) = S ) |
|
| 10 | 6 8 9 | syl2an2 | |- ( ( G e. W /\ S C_ V ) -> ( Vtx ` <. S , ( ( iEdg ` G ) |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ S } ) >. ) = S ) |
| 11 | 4 10 | eqtrd | |- ( ( G e. W /\ S C_ V ) -> ( Vtx ` ( G ISubGr S ) ) = S ) |