This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the von Mangoldt function at a prime power. (Contributed by Mario Carneiro, 7-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vmappw | |- ( ( P e. Prime /\ K e. NN ) -> ( Lam ` ( P ^ K ) ) = ( log ` P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 2 | nnnn0 | |- ( K e. NN -> K e. NN0 ) |
|
| 3 | nnexpcl | |- ( ( P e. NN /\ K e. NN0 ) -> ( P ^ K ) e. NN ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( P e. Prime /\ K e. NN ) -> ( P ^ K ) e. NN ) |
| 5 | eqid | |- { p e. Prime | p || ( P ^ K ) } = { p e. Prime | p || ( P ^ K ) } |
|
| 6 | 5 | vmaval | |- ( ( P ^ K ) e. NN -> ( Lam ` ( P ^ K ) ) = if ( ( # ` { p e. Prime | p || ( P ^ K ) } ) = 1 , ( log ` U. { p e. Prime | p || ( P ^ K ) } ) , 0 ) ) |
| 7 | 4 6 | syl | |- ( ( P e. Prime /\ K e. NN ) -> ( Lam ` ( P ^ K ) ) = if ( ( # ` { p e. Prime | p || ( P ^ K ) } ) = 1 , ( log ` U. { p e. Prime | p || ( P ^ K ) } ) , 0 ) ) |
| 8 | df-rab | |- { p e. Prime | p || ( P ^ K ) } = { p | ( p e. Prime /\ p || ( P ^ K ) ) } |
|
| 9 | prmdvdsexpb | |- ( ( p e. Prime /\ P e. Prime /\ K e. NN ) -> ( p || ( P ^ K ) <-> p = P ) ) |
|
| 10 | 9 | biimpd | |- ( ( p e. Prime /\ P e. Prime /\ K e. NN ) -> ( p || ( P ^ K ) -> p = P ) ) |
| 11 | 10 | 3coml | |- ( ( P e. Prime /\ K e. NN /\ p e. Prime ) -> ( p || ( P ^ K ) -> p = P ) ) |
| 12 | 11 | 3expa | |- ( ( ( P e. Prime /\ K e. NN ) /\ p e. Prime ) -> ( p || ( P ^ K ) -> p = P ) ) |
| 13 | 12 | expimpd | |- ( ( P e. Prime /\ K e. NN ) -> ( ( p e. Prime /\ p || ( P ^ K ) ) -> p = P ) ) |
| 14 | simpl | |- ( ( P e. Prime /\ K e. NN ) -> P e. Prime ) |
|
| 15 | prmz | |- ( P e. Prime -> P e. ZZ ) |
|
| 16 | iddvdsexp | |- ( ( P e. ZZ /\ K e. NN ) -> P || ( P ^ K ) ) |
|
| 17 | 15 16 | sylan | |- ( ( P e. Prime /\ K e. NN ) -> P || ( P ^ K ) ) |
| 18 | 14 17 | jca | |- ( ( P e. Prime /\ K e. NN ) -> ( P e. Prime /\ P || ( P ^ K ) ) ) |
| 19 | eleq1 | |- ( p = P -> ( p e. Prime <-> P e. Prime ) ) |
|
| 20 | breq1 | |- ( p = P -> ( p || ( P ^ K ) <-> P || ( P ^ K ) ) ) |
|
| 21 | 19 20 | anbi12d | |- ( p = P -> ( ( p e. Prime /\ p || ( P ^ K ) ) <-> ( P e. Prime /\ P || ( P ^ K ) ) ) ) |
| 22 | 18 21 | syl5ibrcom | |- ( ( P e. Prime /\ K e. NN ) -> ( p = P -> ( p e. Prime /\ p || ( P ^ K ) ) ) ) |
| 23 | 13 22 | impbid | |- ( ( P e. Prime /\ K e. NN ) -> ( ( p e. Prime /\ p || ( P ^ K ) ) <-> p = P ) ) |
| 24 | velsn | |- ( p e. { P } <-> p = P ) |
|
| 25 | 23 24 | bitr4di | |- ( ( P e. Prime /\ K e. NN ) -> ( ( p e. Prime /\ p || ( P ^ K ) ) <-> p e. { P } ) ) |
| 26 | 25 | eqabcdv | |- ( ( P e. Prime /\ K e. NN ) -> { p | ( p e. Prime /\ p || ( P ^ K ) ) } = { P } ) |
| 27 | 8 26 | eqtrid | |- ( ( P e. Prime /\ K e. NN ) -> { p e. Prime | p || ( P ^ K ) } = { P } ) |
| 28 | 27 | fveq2d | |- ( ( P e. Prime /\ K e. NN ) -> ( # ` { p e. Prime | p || ( P ^ K ) } ) = ( # ` { P } ) ) |
| 29 | hashsng | |- ( P e. Prime -> ( # ` { P } ) = 1 ) |
|
| 30 | 29 | adantr | |- ( ( P e. Prime /\ K e. NN ) -> ( # ` { P } ) = 1 ) |
| 31 | 28 30 | eqtrd | |- ( ( P e. Prime /\ K e. NN ) -> ( # ` { p e. Prime | p || ( P ^ K ) } ) = 1 ) |
| 32 | 31 | iftrued | |- ( ( P e. Prime /\ K e. NN ) -> if ( ( # ` { p e. Prime | p || ( P ^ K ) } ) = 1 , ( log ` U. { p e. Prime | p || ( P ^ K ) } ) , 0 ) = ( log ` U. { p e. Prime | p || ( P ^ K ) } ) ) |
| 33 | 27 | unieqd | |- ( ( P e. Prime /\ K e. NN ) -> U. { p e. Prime | p || ( P ^ K ) } = U. { P } ) |
| 34 | unisng | |- ( P e. Prime -> U. { P } = P ) |
|
| 35 | 34 | adantr | |- ( ( P e. Prime /\ K e. NN ) -> U. { P } = P ) |
| 36 | 33 35 | eqtrd | |- ( ( P e. Prime /\ K e. NN ) -> U. { p e. Prime | p || ( P ^ K ) } = P ) |
| 37 | 36 | fveq2d | |- ( ( P e. Prime /\ K e. NN ) -> ( log ` U. { p e. Prime | p || ( P ^ K ) } ) = ( log ` P ) ) |
| 38 | 7 32 37 | 3eqtrd | |- ( ( P e. Prime /\ K e. NN ) -> ( Lam ` ( P ^ K ) ) = ( log ` P ) ) |