This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The isomorphisms are the domain of the inverse relation. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isoval2.n | |- N = ( Inv ` C ) |
|
| isoval2.i | |- I = ( Iso ` C ) |
||
| Assertion | isoval2 | |- ( X I Y ) = dom ( X N Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isoval2.n | |- N = ( Inv ` C ) |
|
| 2 | isoval2.i | |- I = ( Iso ` C ) |
|
| 3 | id | |- ( f e. ( X I Y ) -> f e. ( X I Y ) ) |
|
| 4 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 5 | 2 3 | isorcl | |- ( f e. ( X I Y ) -> C e. Cat ) |
| 6 | 2 3 4 | isorcl2 | |- ( f e. ( X I Y ) -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 7 | 6 | simpld | |- ( f e. ( X I Y ) -> X e. ( Base ` C ) ) |
| 8 | 6 | simprd | |- ( f e. ( X I Y ) -> Y e. ( Base ` C ) ) |
| 9 | 4 1 5 7 8 2 | isoval | |- ( f e. ( X I Y ) -> ( X I Y ) = dom ( X N Y ) ) |
| 10 | 3 9 | eleqtrd | |- ( f e. ( X I Y ) -> f e. dom ( X N Y ) ) |
| 11 | vex | |- f e. _V |
|
| 12 | 11 | eldm | |- ( f e. dom ( X N Y ) <-> E. g f ( X N Y ) g ) |
| 13 | id | |- ( f ( X N Y ) g -> f ( X N Y ) g ) |
|
| 14 | 1 13 | invrcl | |- ( f ( X N Y ) g -> C e. Cat ) |
| 15 | 1 13 4 | invrcl2 | |- ( f ( X N Y ) g -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 16 | 15 | simpld | |- ( f ( X N Y ) g -> X e. ( Base ` C ) ) |
| 17 | 15 | simprd | |- ( f ( X N Y ) g -> Y e. ( Base ` C ) ) |
| 18 | 4 1 14 16 17 2 13 | inviso1 | |- ( f ( X N Y ) g -> f e. ( X I Y ) ) |
| 19 | 18 | exlimiv | |- ( E. g f ( X N Y ) g -> f e. ( X I Y ) ) |
| 20 | 12 19 | sylbi | |- ( f e. dom ( X N Y ) -> f e. ( X I Y ) ) |
| 21 | 10 20 | impbii | |- ( f e. ( X I Y ) <-> f e. dom ( X N Y ) ) |
| 22 | 21 | eqriv | |- ( X I Y ) = dom ( X N Y ) |