This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isorcl.i | |- I = ( Iso ` C ) |
|
| isorcl.f | |- ( ph -> F e. ( X I Y ) ) |
||
| Assertion | isorcl | |- ( ph -> C e. Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isorcl.i | |- I = ( Iso ` C ) |
|
| 2 | isorcl.f | |- ( ph -> F e. ( X I Y ) ) |
|
| 3 | elfvne0 | |- ( F e. ( I ` <. X , Y >. ) -> I =/= (/) ) |
|
| 4 | df-ov | |- ( X I Y ) = ( I ` <. X , Y >. ) |
|
| 5 | 3 4 | eleq2s | |- ( F e. ( X I Y ) -> I =/= (/) ) |
| 6 | 1 | neeq1i | |- ( I =/= (/) <-> ( Iso ` C ) =/= (/) ) |
| 7 | n0 | |- ( ( Iso ` C ) =/= (/) <-> E. x x e. ( Iso ` C ) ) |
|
| 8 | 6 7 | bitri | |- ( I =/= (/) <-> E. x x e. ( Iso ` C ) ) |
| 9 | 5 8 | sylib | |- ( F e. ( X I Y ) -> E. x x e. ( Iso ` C ) ) |
| 10 | df-iso | |- Iso = ( c e. Cat |-> ( ( x e. _V |-> dom x ) o. ( Inv ` c ) ) ) |
|
| 11 | 10 | mptrcl | |- ( x e. ( Iso ` C ) -> C e. Cat ) |
| 12 | 11 | exlimiv | |- ( E. x x e. ( Iso ` C ) -> C e. Cat ) |
| 13 | 2 9 12 | 3syl | |- ( ph -> C e. Cat ) |