This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invrcl.n | |- N = ( Inv ` C ) |
|
| invrcl.f | |- ( ph -> F ( X N Y ) G ) |
||
| invrcl2.b | |- B = ( Base ` C ) |
||
| Assertion | invrcl2 | |- ( ph -> ( X e. B /\ Y e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrcl.n | |- N = ( Inv ` C ) |
|
| 2 | invrcl.f | |- ( ph -> F ( X N Y ) G ) |
|
| 3 | invrcl2.b | |- B = ( Base ` C ) |
|
| 4 | df-br | |- ( F ( X N Y ) G <-> <. F , G >. e. ( X N Y ) ) |
|
| 5 | 2 4 | sylib | |- ( ph -> <. F , G >. e. ( X N Y ) ) |
| 6 | 1 2 | invrcl | |- ( ph -> C e. Cat ) |
| 7 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 8 | 3 1 6 7 | invffval | |- ( ph -> N = ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) ) |
| 9 | 8 | oveqd | |- ( ph -> ( X N Y ) = ( X ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Y ) ) |
| 10 | 5 9 | eleqtrd | |- ( ph -> <. F , G >. e. ( X ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Y ) ) |
| 11 | eqid | |- ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) = ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) |
|
| 12 | 11 | elmpocl | |- ( <. F , G >. e. ( X ( x e. B , y e. B |-> ( ( x ( Sect ` C ) y ) i^i `' ( y ( Sect ` C ) x ) ) ) Y ) -> ( X e. B /\ Y e. B ) ) |
| 13 | 10 12 | syl | |- ( ph -> ( X e. B /\ Y e. B ) ) |