This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for inverse relations. (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | invrcl.n | |- N = ( Inv ` C ) |
|
| invrcl.f | |- ( ph -> F ( X N Y ) G ) |
||
| Assertion | invrcl | |- ( ph -> C e. Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invrcl.n | |- N = ( Inv ` C ) |
|
| 2 | invrcl.f | |- ( ph -> F ( X N Y ) G ) |
|
| 3 | df-br | |- ( F ( X N Y ) G <-> <. F , G >. e. ( X N Y ) ) |
|
| 4 | df-ov | |- ( X N Y ) = ( N ` <. X , Y >. ) |
|
| 5 | 4 | eleq2i | |- ( <. F , G >. e. ( X N Y ) <-> <. F , G >. e. ( N ` <. X , Y >. ) ) |
| 6 | 3 5 | bitri | |- ( F ( X N Y ) G <-> <. F , G >. e. ( N ` <. X , Y >. ) ) |
| 7 | elfvne0 | |- ( <. F , G >. e. ( N ` <. X , Y >. ) -> N =/= (/) ) |
|
| 8 | 6 7 | sylbi | |- ( F ( X N Y ) G -> N =/= (/) ) |
| 9 | 1 | neeq1i | |- ( N =/= (/) <-> ( Inv ` C ) =/= (/) ) |
| 10 | n0 | |- ( ( Inv ` C ) =/= (/) <-> E. x x e. ( Inv ` C ) ) |
|
| 11 | 9 10 | bitri | |- ( N =/= (/) <-> E. x x e. ( Inv ` C ) ) |
| 12 | 8 11 | sylib | |- ( F ( X N Y ) G -> E. x x e. ( Inv ` C ) ) |
| 13 | df-inv | |- Inv = ( c e. Cat |-> ( x e. ( Base ` c ) , y e. ( Base ` c ) |-> ( ( x ( Sect ` c ) y ) i^i `' ( y ( Sect ` c ) x ) ) ) ) |
|
| 14 | 13 | mptrcl | |- ( x e. ( Inv ` C ) -> C e. Cat ) |
| 15 | 14 | exlimiv | |- ( E. x x e. ( Inv ` C ) -> C e. Cat ) |
| 16 | 2 12 15 | 3syl | |- ( ph -> C e. Cat ) |