This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The isomorphisms are the domain of the inverse relation. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isoval2.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| isoval2.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| Assertion | isoval2 | ⊢ ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isoval2.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 2 | isoval2.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 3 | id | ⊢ ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) → 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 5 | 2 3 | isorcl | ⊢ ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) → 𝐶 ∈ Cat ) |
| 6 | 2 3 4 | isorcl2 | ⊢ ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 7 | 6 | simpld | ⊢ ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 8 | 6 | simprd | ⊢ ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 9 | 4 1 5 7 8 2 | isoval | ⊢ ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) → ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) ) |
| 10 | 3 9 | eleqtrd | ⊢ ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) → 𝑓 ∈ dom ( 𝑋 𝑁 𝑌 ) ) |
| 11 | vex | ⊢ 𝑓 ∈ V | |
| 12 | 11 | eldm | ⊢ ( 𝑓 ∈ dom ( 𝑋 𝑁 𝑌 ) ↔ ∃ 𝑔 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ) |
| 13 | id | ⊢ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 → 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 ) | |
| 14 | 1 13 | invrcl | ⊢ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 → 𝐶 ∈ Cat ) |
| 15 | 1 13 4 | invrcl2 | ⊢ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 16 | 15 | simpld | ⊢ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 17 | 15 | simprd | ⊢ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 18 | 4 1 14 16 17 2 13 | inviso1 | ⊢ ( 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 → 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 19 | 18 | exlimiv | ⊢ ( ∃ 𝑔 𝑓 ( 𝑋 𝑁 𝑌 ) 𝑔 → 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 20 | 12 19 | sylbi | ⊢ ( 𝑓 ∈ dom ( 𝑋 𝑁 𝑌 ) → 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| 21 | 10 20 | impbii | ⊢ ( 𝑓 ∈ ( 𝑋 𝐼 𝑌 ) ↔ 𝑓 ∈ dom ( 𝑋 𝑁 𝑌 ) ) |
| 22 | 21 | eqriv | ⊢ ( 𝑋 𝐼 𝑌 ) = dom ( 𝑋 𝑁 𝑌 ) |