This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for isomorphism relations. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isorcl.i | |- I = ( Iso ` C ) |
|
| isorcl.f | |- ( ph -> F e. ( X I Y ) ) |
||
| isorcl2.b | |- B = ( Base ` C ) |
||
| Assertion | isorcl2 | |- ( ph -> ( X e. B /\ Y e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isorcl.i | |- I = ( Iso ` C ) |
|
| 2 | isorcl.f | |- ( ph -> F e. ( X I Y ) ) |
|
| 3 | isorcl2.b | |- B = ( Base ` C ) |
|
| 4 | eqid | |- ( Inv ` C ) = ( Inv ` C ) |
|
| 5 | 1 2 | isorcl | |- ( ph -> C e. Cat ) |
| 6 | 3 4 5 1 | isofval2 | |- ( ph -> I = ( x e. B , y e. B |-> dom ( x ( Inv ` C ) y ) ) ) |
| 7 | 6 | oveqd | |- ( ph -> ( X I Y ) = ( X ( x e. B , y e. B |-> dom ( x ( Inv ` C ) y ) ) Y ) ) |
| 8 | 2 7 | eleqtrd | |- ( ph -> F e. ( X ( x e. B , y e. B |-> dom ( x ( Inv ` C ) y ) ) Y ) ) |
| 9 | eqid | |- ( x e. B , y e. B |-> dom ( x ( Inv ` C ) y ) ) = ( x e. B , y e. B |-> dom ( x ( Inv ` C ) y ) ) |
|
| 10 | 9 | elmpocl | |- ( F e. ( X ( x e. B , y e. B |-> dom ( x ( Inv ` C ) y ) ) Y ) -> ( X e. B /\ Y e. B ) ) |
| 11 | 8 10 | syl | |- ( ph -> ( X e. B /\ Y e. B ) ) |