This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of image. Compare definition (d) of Enderton p. 44. (Contributed by NM, 19-Apr-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfima2 | |- ( A " B ) = { y | E. x e. B x A y } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima | |- ( A " B ) = ran ( A |` B ) |
|
| 2 | dfrn2 | |- ran ( A |` B ) = { y | E. x x ( A |` B ) y } |
|
| 3 | brres | |- ( y e. _V -> ( x ( A |` B ) y <-> ( x e. B /\ x A y ) ) ) |
|
| 4 | 3 | elv | |- ( x ( A |` B ) y <-> ( x e. B /\ x A y ) ) |
| 5 | 4 | exbii | |- ( E. x x ( A |` B ) y <-> E. x ( x e. B /\ x A y ) ) |
| 6 | df-rex | |- ( E. x e. B x A y <-> E. x ( x e. B /\ x A y ) ) |
|
| 7 | 5 6 | bitr4i | |- ( E. x x ( A |` B ) y <-> E. x e. B x A y ) |
| 8 | 7 | abbii | |- { y | E. x x ( A |` B ) y } = { y | E. x e. B x A y } |
| 9 | 1 2 8 | 3eqtri | |- ( A " B ) = { y | E. x e. B x A y } |