This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Lebesgue measure, which is just the outer measure with a peculiar domain of definition. The property of being Lebesgue-measurable can be expressed as A e. dom vol . (Contributed by Mario Carneiro, 17-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-vol | |- vol = ( vol* |` { x | A. y e. ( `' vol* " RR ) ( vol* ` y ) = ( ( vol* ` ( y i^i x ) ) + ( vol* ` ( y \ x ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cvol | |- vol |
|
| 1 | covol | |- vol* |
|
| 2 | vx | |- x |
|
| 3 | vy | |- y |
|
| 4 | 1 | ccnv | |- `' vol* |
| 5 | cr | |- RR |
|
| 6 | 4 5 | cima | |- ( `' vol* " RR ) |
| 7 | 3 | cv | |- y |
| 8 | 7 1 | cfv | |- ( vol* ` y ) |
| 9 | 2 | cv | |- x |
| 10 | 7 9 | cin | |- ( y i^i x ) |
| 11 | 10 1 | cfv | |- ( vol* ` ( y i^i x ) ) |
| 12 | caddc | |- + |
|
| 13 | 7 9 | cdif | |- ( y \ x ) |
| 14 | 13 1 | cfv | |- ( vol* ` ( y \ x ) ) |
| 15 | 11 14 12 | co | |- ( ( vol* ` ( y i^i x ) ) + ( vol* ` ( y \ x ) ) ) |
| 16 | 8 15 | wceq | |- ( vol* ` y ) = ( ( vol* ` ( y i^i x ) ) + ( vol* ` ( y \ x ) ) ) |
| 17 | 16 3 6 | wral | |- A. y e. ( `' vol* " RR ) ( vol* ` y ) = ( ( vol* ` ( y i^i x ) ) + ( vol* ` ( y \ x ) ) ) |
| 18 | 17 2 | cab | |- { x | A. y e. ( `' vol* " RR ) ( vol* ` y ) = ( ( vol* ` ( y i^i x ) ) + ( vol* ` ( y \ x ) ) ) } |
| 19 | 1 18 | cres | |- ( vol* |` { x | A. y e. ( `' vol* " RR ) ( vol* ` y ) = ( ( vol* ` ( y i^i x ) ) + ( vol* ` ( y \ x ) ) ) } ) |
| 20 | 0 19 | wceq | |- vol = ( vol* |` { x | A. y e. ( `' vol* " RR ) ( vol* ` y ) = ( ( vol* ` ( y i^i x ) ) + ( vol* ` ( y \ x ) ) ) } ) |