This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property " F is an inverse of G ". (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isinv2.n | |- N = ( Inv ` C ) |
|
| isinv2.s | |- S = ( Sect ` C ) |
||
| Assertion | isinv2 | |- ( F ( X N Y ) G <-> ( F ( X S Y ) G /\ G ( Y S X ) F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinv2.n | |- N = ( Inv ` C ) |
|
| 2 | isinv2.s | |- S = ( Sect ` C ) |
|
| 3 | id | |- ( F ( X N Y ) G -> F ( X N Y ) G ) |
|
| 4 | 1 3 | invrcl | |- ( F ( X N Y ) G -> C e. Cat ) |
| 5 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 6 | 1 3 5 | invrcl2 | |- ( F ( X N Y ) G -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 7 | 4 6 | jca | |- ( F ( X N Y ) G -> ( C e. Cat /\ ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) ) |
| 8 | simpl | |- ( ( F ( X S Y ) G /\ G ( Y S X ) F ) -> F ( X S Y ) G ) |
|
| 9 | 2 8 | sectrcl | |- ( ( F ( X S Y ) G /\ G ( Y S X ) F ) -> C e. Cat ) |
| 10 | 2 8 5 | sectrcl2 | |- ( ( F ( X S Y ) G /\ G ( Y S X ) F ) -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 11 | 9 10 | jca | |- ( ( F ( X S Y ) G /\ G ( Y S X ) F ) -> ( C e. Cat /\ ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) ) |
| 12 | simpl | |- ( ( C e. Cat /\ ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) -> C e. Cat ) |
|
| 13 | simprl | |- ( ( C e. Cat /\ ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) -> X e. ( Base ` C ) ) |
|
| 14 | simprr | |- ( ( C e. Cat /\ ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) -> Y e. ( Base ` C ) ) |
|
| 15 | 5 1 12 13 14 2 | isinv | |- ( ( C e. Cat /\ ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) -> ( F ( X N Y ) G <-> ( F ( X S Y ) G /\ G ( Y S X ) F ) ) ) |
| 16 | 7 11 15 | pm5.21nii | |- ( F ( X N Y ) G <-> ( F ( X S Y ) G /\ G ( Y S X ) F ) ) |