This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property " F is an inverse of G ". (Contributed by Zhi Wang, 14-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isinv2.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| isinv2.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| Assertion | isinv2 | ⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinv2.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 2 | isinv2.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 3 | id | ⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ) | |
| 4 | 1 3 | invrcl | ⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → 𝐶 ∈ Cat ) |
| 5 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 6 | 1 3 5 | invrcl2 | ⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 7 | 4 6 | jca | ⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 → ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) ) |
| 8 | simpl | ⊢ ( ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) | |
| 9 | 2 8 | sectrcl | ⊢ ( ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) → 𝐶 ∈ Cat ) |
| 10 | 2 8 5 | sectrcl2 | ⊢ ( ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 11 | 9 10 | jca | ⊢ ( ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) → ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) ) |
| 12 | simpl | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) | |
| 13 | simprl | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) | |
| 14 | simprr | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) | |
| 15 | 5 1 12 13 14 2 | isinv | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) ) |
| 16 | 7 11 15 | pm5.21nii | ⊢ ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) |