This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an isomorphism" (deduction form). (Contributed by Zhi Wang, 16-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isisod.b | |- B = ( Base ` C ) |
|
| isisod.h | |- H = ( Hom ` C ) |
||
| isisod.o | |- .x. = ( comp ` C ) |
||
| isisod.i | |- I = ( Iso ` C ) |
||
| isisod.1 | |- .1. = ( Id ` C ) |
||
| isisod.c | |- ( ph -> C e. Cat ) |
||
| isisod.x | |- ( ph -> X e. B ) |
||
| isisod.y | |- ( ph -> Y e. B ) |
||
| isisod.f | |- ( ph -> F e. ( X H Y ) ) |
||
| isisod.g | |- ( ph -> G e. ( Y H X ) ) |
||
| isisod.gf | |- ( ph -> ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) |
||
| isisod.fg | |- ( ph -> ( F ( <. Y , X >. .x. Y ) G ) = ( .1. ` Y ) ) |
||
| Assertion | isisod | |- ( ph -> F e. ( X I Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isisod.b | |- B = ( Base ` C ) |
|
| 2 | isisod.h | |- H = ( Hom ` C ) |
|
| 3 | isisod.o | |- .x. = ( comp ` C ) |
|
| 4 | isisod.i | |- I = ( Iso ` C ) |
|
| 5 | isisod.1 | |- .1. = ( Id ` C ) |
|
| 6 | isisod.c | |- ( ph -> C e. Cat ) |
|
| 7 | isisod.x | |- ( ph -> X e. B ) |
|
| 8 | isisod.y | |- ( ph -> Y e. B ) |
|
| 9 | isisod.f | |- ( ph -> F e. ( X H Y ) ) |
|
| 10 | isisod.g | |- ( ph -> G e. ( Y H X ) ) |
|
| 11 | isisod.gf | |- ( ph -> ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) |
|
| 12 | isisod.fg | |- ( ph -> ( F ( <. Y , X >. .x. Y ) G ) = ( .1. ` Y ) ) |
|
| 13 | simpr | |- ( ( ph /\ g = G ) -> g = G ) |
|
| 14 | 13 | oveq1d | |- ( ( ph /\ g = G ) -> ( g ( <. X , Y >. .x. X ) F ) = ( G ( <. X , Y >. .x. X ) F ) ) |
| 15 | 14 | eqeq1d | |- ( ( ph /\ g = G ) -> ( ( g ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) <-> ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) ) ) |
| 16 | 13 | oveq2d | |- ( ( ph /\ g = G ) -> ( F ( <. Y , X >. .x. Y ) g ) = ( F ( <. Y , X >. .x. Y ) G ) ) |
| 17 | 16 | eqeq1d | |- ( ( ph /\ g = G ) -> ( ( F ( <. Y , X >. .x. Y ) g ) = ( .1. ` Y ) <-> ( F ( <. Y , X >. .x. Y ) G ) = ( .1. ` Y ) ) ) |
| 18 | 15 17 | anbi12d | |- ( ( ph /\ g = G ) -> ( ( ( g ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. .x. Y ) g ) = ( .1. ` Y ) ) <-> ( ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. .x. Y ) G ) = ( .1. ` Y ) ) ) ) |
| 19 | 10 18 | rspcedv | |- ( ph -> ( ( ( G ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. .x. Y ) G ) = ( .1. ` Y ) ) -> E. g e. ( Y H X ) ( ( g ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. .x. Y ) g ) = ( .1. ` Y ) ) ) ) |
| 20 | 11 12 19 | mp2and | |- ( ph -> E. g e. ( Y H X ) ( ( g ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. .x. Y ) g ) = ( .1. ` Y ) ) ) |
| 21 | 3 | oveqi | |- ( <. X , Y >. .x. X ) = ( <. X , Y >. ( comp ` C ) X ) |
| 22 | 3 | oveqi | |- ( <. Y , X >. .x. Y ) = ( <. Y , X >. ( comp ` C ) Y ) |
| 23 | 1 2 6 4 7 8 9 5 21 22 | dfiso2 | |- ( ph -> ( F e. ( X I Y ) <-> E. g e. ( Y H X ) ( ( g ( <. X , Y >. .x. X ) F ) = ( .1. ` X ) /\ ( F ( <. Y , X >. .x. Y ) g ) = ( .1. ` Y ) ) ) ) |
| 24 | 20 23 | mpbird | |- ( ph -> F e. ( X I Y ) ) |