This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two one-to-one onto functions with disjoint domains and ranges. (Contributed by NM, 26-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oun | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D ) /\ ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) ) -> ( F u. G ) : ( A u. C ) -1-1-onto-> ( B u. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff1o4 | |- ( F : A -1-1-onto-> B <-> ( F Fn A /\ `' F Fn B ) ) |
|
| 2 | dff1o4 | |- ( G : C -1-1-onto-> D <-> ( G Fn C /\ `' G Fn D ) ) |
|
| 3 | fnun | |- ( ( ( F Fn A /\ G Fn C ) /\ ( A i^i C ) = (/) ) -> ( F u. G ) Fn ( A u. C ) ) |
|
| 4 | 3 | ex | |- ( ( F Fn A /\ G Fn C ) -> ( ( A i^i C ) = (/) -> ( F u. G ) Fn ( A u. C ) ) ) |
| 5 | fnun | |- ( ( ( `' F Fn B /\ `' G Fn D ) /\ ( B i^i D ) = (/) ) -> ( `' F u. `' G ) Fn ( B u. D ) ) |
|
| 6 | cnvun | |- `' ( F u. G ) = ( `' F u. `' G ) |
|
| 7 | 6 | fneq1i | |- ( `' ( F u. G ) Fn ( B u. D ) <-> ( `' F u. `' G ) Fn ( B u. D ) ) |
| 8 | 5 7 | sylibr | |- ( ( ( `' F Fn B /\ `' G Fn D ) /\ ( B i^i D ) = (/) ) -> `' ( F u. G ) Fn ( B u. D ) ) |
| 9 | 8 | ex | |- ( ( `' F Fn B /\ `' G Fn D ) -> ( ( B i^i D ) = (/) -> `' ( F u. G ) Fn ( B u. D ) ) ) |
| 10 | 4 9 | im2anan9 | |- ( ( ( F Fn A /\ G Fn C ) /\ ( `' F Fn B /\ `' G Fn D ) ) -> ( ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) -> ( ( F u. G ) Fn ( A u. C ) /\ `' ( F u. G ) Fn ( B u. D ) ) ) ) |
| 11 | 10 | an4s | |- ( ( ( F Fn A /\ `' F Fn B ) /\ ( G Fn C /\ `' G Fn D ) ) -> ( ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) -> ( ( F u. G ) Fn ( A u. C ) /\ `' ( F u. G ) Fn ( B u. D ) ) ) ) |
| 12 | 1 2 11 | syl2anb | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D ) -> ( ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) -> ( ( F u. G ) Fn ( A u. C ) /\ `' ( F u. G ) Fn ( B u. D ) ) ) ) |
| 13 | dff1o4 | |- ( ( F u. G ) : ( A u. C ) -1-1-onto-> ( B u. D ) <-> ( ( F u. G ) Fn ( A u. C ) /\ `' ( F u. G ) Fn ( B u. D ) ) ) |
|
| 14 | 12 13 | imbitrrdi | |- ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D ) -> ( ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) -> ( F u. G ) : ( A u. C ) -1-1-onto-> ( B u. D ) ) ) |
| 15 | 14 | imp | |- ( ( ( F : A -1-1-onto-> B /\ G : C -1-1-onto-> D ) /\ ( ( A i^i C ) = (/) /\ ( B i^i D ) = (/) ) ) -> ( F u. G ) : ( A u. C ) -1-1-onto-> ( B u. D ) ) |