This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fineqv . (Contributed by Mario Carneiro, 20-Jan-2013) (Proof shortened by Stefan O'Rear, 3-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fineqvlem | |- ( ( A e. V /\ -. A e. Fin ) -> _om ~<_ ~P ~P A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg | |- ( A e. V -> ~P A e. _V ) |
|
| 2 | 1 | adantr | |- ( ( A e. V /\ -. A e. Fin ) -> ~P A e. _V ) |
| 3 | 2 | pwexd | |- ( ( A e. V /\ -. A e. Fin ) -> ~P ~P A e. _V ) |
| 4 | ssrab2 | |- { d e. ~P A | d ~~ b } C_ ~P A |
|
| 5 | elpw2g | |- ( ~P A e. _V -> ( { d e. ~P A | d ~~ b } e. ~P ~P A <-> { d e. ~P A | d ~~ b } C_ ~P A ) ) |
|
| 6 | 2 5 | syl | |- ( ( A e. V /\ -. A e. Fin ) -> ( { d e. ~P A | d ~~ b } e. ~P ~P A <-> { d e. ~P A | d ~~ b } C_ ~P A ) ) |
| 7 | 4 6 | mpbiri | |- ( ( A e. V /\ -. A e. Fin ) -> { d e. ~P A | d ~~ b } e. ~P ~P A ) |
| 8 | 7 | a1d | |- ( ( A e. V /\ -. A e. Fin ) -> ( b e. _om -> { d e. ~P A | d ~~ b } e. ~P ~P A ) ) |
| 9 | isinf | |- ( -. A e. Fin -> A. b e. _om E. e ( e C_ A /\ e ~~ b ) ) |
|
| 10 | 9 | r19.21bi | |- ( ( -. A e. Fin /\ b e. _om ) -> E. e ( e C_ A /\ e ~~ b ) ) |
| 11 | 10 | ad2ant2lr | |- ( ( ( A e. V /\ -. A e. Fin ) /\ ( b e. _om /\ c e. _om ) ) -> E. e ( e C_ A /\ e ~~ b ) ) |
| 12 | velpw | |- ( e e. ~P A <-> e C_ A ) |
|
| 13 | 12 | biimpri | |- ( e C_ A -> e e. ~P A ) |
| 14 | 13 | anim1i | |- ( ( e C_ A /\ e ~~ b ) -> ( e e. ~P A /\ e ~~ b ) ) |
| 15 | breq1 | |- ( d = e -> ( d ~~ b <-> e ~~ b ) ) |
|
| 16 | 15 | elrab | |- ( e e. { d e. ~P A | d ~~ b } <-> ( e e. ~P A /\ e ~~ b ) ) |
| 17 | 14 16 | sylibr | |- ( ( e C_ A /\ e ~~ b ) -> e e. { d e. ~P A | d ~~ b } ) |
| 18 | 17 | eximi | |- ( E. e ( e C_ A /\ e ~~ b ) -> E. e e e. { d e. ~P A | d ~~ b } ) |
| 19 | 11 18 | syl | |- ( ( ( A e. V /\ -. A e. Fin ) /\ ( b e. _om /\ c e. _om ) ) -> E. e e e. { d e. ~P A | d ~~ b } ) |
| 20 | eleq2 | |- ( { d e. ~P A | d ~~ b } = { d e. ~P A | d ~~ c } -> ( e e. { d e. ~P A | d ~~ b } <-> e e. { d e. ~P A | d ~~ c } ) ) |
|
| 21 | 20 | biimpcd | |- ( e e. { d e. ~P A | d ~~ b } -> ( { d e. ~P A | d ~~ b } = { d e. ~P A | d ~~ c } -> e e. { d e. ~P A | d ~~ c } ) ) |
| 22 | 21 | adantl | |- ( ( ( ( A e. V /\ -. A e. Fin ) /\ ( b e. _om /\ c e. _om ) ) /\ e e. { d e. ~P A | d ~~ b } ) -> ( { d e. ~P A | d ~~ b } = { d e. ~P A | d ~~ c } -> e e. { d e. ~P A | d ~~ c } ) ) |
| 23 | 16 | simprbi | |- ( e e. { d e. ~P A | d ~~ b } -> e ~~ b ) |
| 24 | breq1 | |- ( d = e -> ( d ~~ c <-> e ~~ c ) ) |
|
| 25 | 24 | elrab | |- ( e e. { d e. ~P A | d ~~ c } <-> ( e e. ~P A /\ e ~~ c ) ) |
| 26 | 25 | simprbi | |- ( e e. { d e. ~P A | d ~~ c } -> e ~~ c ) |
| 27 | ensym | |- ( e ~~ b -> b ~~ e ) |
|
| 28 | entr | |- ( ( b ~~ e /\ e ~~ c ) -> b ~~ c ) |
|
| 29 | 27 28 | sylan | |- ( ( e ~~ b /\ e ~~ c ) -> b ~~ c ) |
| 30 | 23 26 29 | syl2an | |- ( ( e e. { d e. ~P A | d ~~ b } /\ e e. { d e. ~P A | d ~~ c } ) -> b ~~ c ) |
| 31 | 30 | ex | |- ( e e. { d e. ~P A | d ~~ b } -> ( e e. { d e. ~P A | d ~~ c } -> b ~~ c ) ) |
| 32 | 31 | adantl | |- ( ( ( ( A e. V /\ -. A e. Fin ) /\ ( b e. _om /\ c e. _om ) ) /\ e e. { d e. ~P A | d ~~ b } ) -> ( e e. { d e. ~P A | d ~~ c } -> b ~~ c ) ) |
| 33 | nneneq | |- ( ( b e. _om /\ c e. _om ) -> ( b ~~ c <-> b = c ) ) |
|
| 34 | 33 | biimpd | |- ( ( b e. _om /\ c e. _om ) -> ( b ~~ c -> b = c ) ) |
| 35 | 34 | ad2antlr | |- ( ( ( ( A e. V /\ -. A e. Fin ) /\ ( b e. _om /\ c e. _om ) ) /\ e e. { d e. ~P A | d ~~ b } ) -> ( b ~~ c -> b = c ) ) |
| 36 | 22 32 35 | 3syld | |- ( ( ( ( A e. V /\ -. A e. Fin ) /\ ( b e. _om /\ c e. _om ) ) /\ e e. { d e. ~P A | d ~~ b } ) -> ( { d e. ~P A | d ~~ b } = { d e. ~P A | d ~~ c } -> b = c ) ) |
| 37 | 19 36 | exlimddv | |- ( ( ( A e. V /\ -. A e. Fin ) /\ ( b e. _om /\ c e. _om ) ) -> ( { d e. ~P A | d ~~ b } = { d e. ~P A | d ~~ c } -> b = c ) ) |
| 38 | breq2 | |- ( b = c -> ( d ~~ b <-> d ~~ c ) ) |
|
| 39 | 38 | rabbidv | |- ( b = c -> { d e. ~P A | d ~~ b } = { d e. ~P A | d ~~ c } ) |
| 40 | 37 39 | impbid1 | |- ( ( ( A e. V /\ -. A e. Fin ) /\ ( b e. _om /\ c e. _om ) ) -> ( { d e. ~P A | d ~~ b } = { d e. ~P A | d ~~ c } <-> b = c ) ) |
| 41 | 40 | ex | |- ( ( A e. V /\ -. A e. Fin ) -> ( ( b e. _om /\ c e. _om ) -> ( { d e. ~P A | d ~~ b } = { d e. ~P A | d ~~ c } <-> b = c ) ) ) |
| 42 | 8 41 | dom2d | |- ( ( A e. V /\ -. A e. Fin ) -> ( ~P ~P A e. _V -> _om ~<_ ~P ~P A ) ) |
| 43 | 3 42 | mpd | |- ( ( A e. V /\ -. A e. Fin ) -> _om ~<_ ~P ~P A ) |