This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dedekind finite is a cardinal property. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin4en1 | |- ( A ~~ B -> ( A e. Fin4 -> B e. Fin4 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensym | |- ( A ~~ B -> B ~~ A ) |
|
| 2 | bren | |- ( B ~~ A <-> E. f f : B -1-1-onto-> A ) |
|
| 3 | simpr | |- ( ( f : B -1-1-onto-> A /\ x C. B ) -> x C. B ) |
|
| 4 | f1of1 | |- ( f : B -1-1-onto-> A -> f : B -1-1-> A ) |
|
| 5 | pssss | |- ( x C. B -> x C_ B ) |
|
| 6 | ssid | |- B C_ B |
|
| 7 | 5 6 | jctir | |- ( x C. B -> ( x C_ B /\ B C_ B ) ) |
| 8 | f1imapss | |- ( ( f : B -1-1-> A /\ ( x C_ B /\ B C_ B ) ) -> ( ( f " x ) C. ( f " B ) <-> x C. B ) ) |
|
| 9 | 4 7 8 | syl2an | |- ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( ( f " x ) C. ( f " B ) <-> x C. B ) ) |
| 10 | 3 9 | mpbird | |- ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( f " x ) C. ( f " B ) ) |
| 11 | imadmrn | |- ( f " dom f ) = ran f |
|
| 12 | f1odm | |- ( f : B -1-1-onto-> A -> dom f = B ) |
|
| 13 | 12 | imaeq2d | |- ( f : B -1-1-onto-> A -> ( f " dom f ) = ( f " B ) ) |
| 14 | dff1o5 | |- ( f : B -1-1-onto-> A <-> ( f : B -1-1-> A /\ ran f = A ) ) |
|
| 15 | 14 | simprbi | |- ( f : B -1-1-onto-> A -> ran f = A ) |
| 16 | 11 13 15 | 3eqtr3a | |- ( f : B -1-1-onto-> A -> ( f " B ) = A ) |
| 17 | 16 | adantr | |- ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( f " B ) = A ) |
| 18 | 17 | psseq2d | |- ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( ( f " x ) C. ( f " B ) <-> ( f " x ) C. A ) ) |
| 19 | 10 18 | mpbid | |- ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( f " x ) C. A ) |
| 20 | 19 | adantrr | |- ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> ( f " x ) C. A ) |
| 21 | vex | |- x e. _V |
|
| 22 | 21 | f1imaen | |- ( ( f : B -1-1-> A /\ x C_ B ) -> ( f " x ) ~~ x ) |
| 23 | 4 5 22 | syl2an | |- ( ( f : B -1-1-onto-> A /\ x C. B ) -> ( f " x ) ~~ x ) |
| 24 | 23 | adantrr | |- ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> ( f " x ) ~~ x ) |
| 25 | simprr | |- ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> x ~~ B ) |
|
| 26 | entr | |- ( ( ( f " x ) ~~ x /\ x ~~ B ) -> ( f " x ) ~~ B ) |
|
| 27 | 24 25 26 | syl2anc | |- ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> ( f " x ) ~~ B ) |
| 28 | vex | |- f e. _V |
|
| 29 | f1oen3g | |- ( ( f e. _V /\ f : B -1-1-onto-> A ) -> B ~~ A ) |
|
| 30 | 28 29 | mpan | |- ( f : B -1-1-onto-> A -> B ~~ A ) |
| 31 | 30 | adantr | |- ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> B ~~ A ) |
| 32 | entr | |- ( ( ( f " x ) ~~ B /\ B ~~ A ) -> ( f " x ) ~~ A ) |
|
| 33 | 27 31 32 | syl2anc | |- ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> ( f " x ) ~~ A ) |
| 34 | fin4i | |- ( ( ( f " x ) C. A /\ ( f " x ) ~~ A ) -> -. A e. Fin4 ) |
|
| 35 | 20 33 34 | syl2anc | |- ( ( f : B -1-1-onto-> A /\ ( x C. B /\ x ~~ B ) ) -> -. A e. Fin4 ) |
| 36 | 35 | ex | |- ( f : B -1-1-onto-> A -> ( ( x C. B /\ x ~~ B ) -> -. A e. Fin4 ) ) |
| 37 | 36 | exlimdv | |- ( f : B -1-1-onto-> A -> ( E. x ( x C. B /\ x ~~ B ) -> -. A e. Fin4 ) ) |
| 38 | 37 | con2d | |- ( f : B -1-1-onto-> A -> ( A e. Fin4 -> -. E. x ( x C. B /\ x ~~ B ) ) ) |
| 39 | 38 | exlimiv | |- ( E. f f : B -1-1-onto-> A -> ( A e. Fin4 -> -. E. x ( x C. B /\ x ~~ B ) ) ) |
| 40 | 2 39 | sylbi | |- ( B ~~ A -> ( A e. Fin4 -> -. E. x ( x C. B /\ x ~~ B ) ) ) |
| 41 | relen | |- Rel ~~ |
|
| 42 | 41 | brrelex1i | |- ( B ~~ A -> B e. _V ) |
| 43 | isfin4 | |- ( B e. _V -> ( B e. Fin4 <-> -. E. x ( x C. B /\ x ~~ B ) ) ) |
|
| 44 | 42 43 | syl | |- ( B ~~ A -> ( B e. Fin4 <-> -. E. x ( x C. B /\ x ~~ B ) ) ) |
| 45 | 40 44 | sylibrd | |- ( B ~~ A -> ( A e. Fin4 -> B e. Fin4 ) ) |
| 46 | 1 45 | syl | |- ( A ~~ B -> ( A e. Fin4 -> B e. Fin4 ) ) |