This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isfin2-2 . The componentwise complement of a nonempty collection of sets is nonempty. (Contributed by Stefan O'Rear, 31-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin23lem7 | |- ( ( A e. V /\ B C_ ~P A /\ B =/= (/) ) -> { x e. ~P A | ( A \ x ) e. B } =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 | |- ( B =/= (/) <-> E. y y e. B ) |
|
| 2 | difss | |- ( A \ y ) C_ A |
|
| 3 | elpw2g | |- ( A e. V -> ( ( A \ y ) e. ~P A <-> ( A \ y ) C_ A ) ) |
|
| 4 | 3 | ad2antrr | |- ( ( ( A e. V /\ B C_ ~P A ) /\ y e. B ) -> ( ( A \ y ) e. ~P A <-> ( A \ y ) C_ A ) ) |
| 5 | 2 4 | mpbiri | |- ( ( ( A e. V /\ B C_ ~P A ) /\ y e. B ) -> ( A \ y ) e. ~P A ) |
| 6 | simpr | |- ( ( A e. V /\ B C_ ~P A ) -> B C_ ~P A ) |
|
| 7 | 6 | sselda | |- ( ( ( A e. V /\ B C_ ~P A ) /\ y e. B ) -> y e. ~P A ) |
| 8 | 7 | elpwid | |- ( ( ( A e. V /\ B C_ ~P A ) /\ y e. B ) -> y C_ A ) |
| 9 | dfss4 | |- ( y C_ A <-> ( A \ ( A \ y ) ) = y ) |
|
| 10 | 8 9 | sylib | |- ( ( ( A e. V /\ B C_ ~P A ) /\ y e. B ) -> ( A \ ( A \ y ) ) = y ) |
| 11 | simpr | |- ( ( ( A e. V /\ B C_ ~P A ) /\ y e. B ) -> y e. B ) |
|
| 12 | 10 11 | eqeltrd | |- ( ( ( A e. V /\ B C_ ~P A ) /\ y e. B ) -> ( A \ ( A \ y ) ) e. B ) |
| 13 | difeq2 | |- ( x = ( A \ y ) -> ( A \ x ) = ( A \ ( A \ y ) ) ) |
|
| 14 | 13 | eleq1d | |- ( x = ( A \ y ) -> ( ( A \ x ) e. B <-> ( A \ ( A \ y ) ) e. B ) ) |
| 15 | 14 | rspcev | |- ( ( ( A \ y ) e. ~P A /\ ( A \ ( A \ y ) ) e. B ) -> E. x e. ~P A ( A \ x ) e. B ) |
| 16 | 5 12 15 | syl2anc | |- ( ( ( A e. V /\ B C_ ~P A ) /\ y e. B ) -> E. x e. ~P A ( A \ x ) e. B ) |
| 17 | 16 | ex | |- ( ( A e. V /\ B C_ ~P A ) -> ( y e. B -> E. x e. ~P A ( A \ x ) e. B ) ) |
| 18 | 17 | exlimdv | |- ( ( A e. V /\ B C_ ~P A ) -> ( E. y y e. B -> E. x e. ~P A ( A \ x ) e. B ) ) |
| 19 | 1 18 | biimtrid | |- ( ( A e. V /\ B C_ ~P A ) -> ( B =/= (/) -> E. x e. ~P A ( A \ x ) e. B ) ) |
| 20 | 19 | 3impia | |- ( ( A e. V /\ B C_ ~P A /\ B =/= (/) ) -> E. x e. ~P A ( A \ x ) e. B ) |
| 21 | rabn0 | |- ( { x e. ~P A | ( A \ x ) e. B } =/= (/) <-> E. x e. ~P A ( A \ x ) e. B ) |
|
| 22 | 20 21 | sylibr | |- ( ( A e. V /\ B C_ ~P A /\ B =/= (/) ) -> { x e. ~P A | ( A \ x ) e. B } =/= (/) ) |