This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer that a set is IV-infinite. (Contributed by Stefan O'Rear, 16-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fin4i | |- ( ( X C. A /\ X ~~ A ) -> -. A e. Fin4 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin4 | |- ( A e. Fin4 -> ( A e. Fin4 <-> -. E. x ( x C. A /\ x ~~ A ) ) ) |
|
| 2 | 1 | ibi | |- ( A e. Fin4 -> -. E. x ( x C. A /\ x ~~ A ) ) |
| 3 | relen | |- Rel ~~ |
|
| 4 | 3 | brrelex1i | |- ( X ~~ A -> X e. _V ) |
| 5 | 4 | adantl | |- ( ( X C. A /\ X ~~ A ) -> X e. _V ) |
| 6 | psseq1 | |- ( x = X -> ( x C. A <-> X C. A ) ) |
|
| 7 | breq1 | |- ( x = X -> ( x ~~ A <-> X ~~ A ) ) |
|
| 8 | 6 7 | anbi12d | |- ( x = X -> ( ( x C. A /\ x ~~ A ) <-> ( X C. A /\ X ~~ A ) ) ) |
| 9 | 8 | spcegv | |- ( X e. _V -> ( ( X C. A /\ X ~~ A ) -> E. x ( x C. A /\ x ~~ A ) ) ) |
| 10 | 5 9 | mpcom | |- ( ( X C. A /\ X ~~ A ) -> E. x ( x C. A /\ x ~~ A ) ) |
| 11 | 2 10 | nsyl3 | |- ( ( X C. A /\ X ~~ A ) -> -. A e. Fin4 ) |