This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a domain, a nonzero element is a regular element. (Contributed by Mario Carneiro, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isdomn2.b | |- B = ( Base ` R ) |
|
| isdomn2.t | |- E = ( RLReg ` R ) |
||
| isdomn2.z | |- .0. = ( 0g ` R ) |
||
| Assertion | domnrrg | |- ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X e. E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isdomn2.b | |- B = ( Base ` R ) |
|
| 2 | isdomn2.t | |- E = ( RLReg ` R ) |
|
| 3 | isdomn2.z | |- .0. = ( 0g ` R ) |
|
| 4 | 1 2 3 | isdomn2 | |- ( R e. Domn <-> ( R e. NzRing /\ ( B \ { .0. } ) C_ E ) ) |
| 5 | 4 | simprbi | |- ( R e. Domn -> ( B \ { .0. } ) C_ E ) |
| 6 | 5 | 3ad2ant1 | |- ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> ( B \ { .0. } ) C_ E ) |
| 7 | simp2 | |- ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X e. B ) |
|
| 8 | simp3 | |- ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X =/= .0. ) |
|
| 9 | eldifsn | |- ( X e. ( B \ { .0. } ) <-> ( X e. B /\ X =/= .0. ) ) |
|
| 10 | 7 8 9 | sylanbrc | |- ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X e. ( B \ { .0. } ) ) |
| 11 | 6 10 | sseldd | |- ( ( R e. Domn /\ X e. B /\ X =/= .0. ) -> X e. E ) |