This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021) (Proof shortened by JJ, 31-May-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssdifsn | |- ( A C_ ( B \ { C } ) <-> ( A C_ B /\ -. C e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss2 | |- ( A C_ ( B \ { C } ) -> A C_ B ) |
|
| 2 | reldisj | |- ( A C_ B -> ( ( A i^i { C } ) = (/) <-> A C_ ( B \ { C } ) ) ) |
|
| 3 | 2 | bicomd | |- ( A C_ B -> ( A C_ ( B \ { C } ) <-> ( A i^i { C } ) = (/) ) ) |
| 4 | 1 3 | biadanii | |- ( A C_ ( B \ { C } ) <-> ( A C_ B /\ ( A i^i { C } ) = (/) ) ) |
| 5 | disjsn | |- ( ( A i^i { C } ) = (/) <-> -. C e. A ) |
|
| 6 | 5 | anbi2i | |- ( ( A C_ B /\ ( A i^i { C } ) = (/) ) <-> ( A C_ B /\ -. C e. A ) ) |
| 7 | 4 6 | bitri | |- ( A C_ ( B \ { C } ) <-> ( A C_ B /\ -. C e. A ) ) |