This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrgnz.t | |- E = ( RLReg ` R ) |
|
| rrgnz.z | |- .0. = ( 0g ` R ) |
||
| Assertion | rrgnz | |- ( R e. NzRing -> -. .0. e. E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgnz.t | |- E = ( RLReg ` R ) |
|
| 2 | rrgnz.z | |- .0. = ( 0g ` R ) |
|
| 3 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 4 | 3 2 | nzrnz | |- ( R e. NzRing -> ( 1r ` R ) =/= .0. ) |
| 5 | 4 | neneqd | |- ( R e. NzRing -> -. ( 1r ` R ) = .0. ) |
| 6 | nzrring | |- ( R e. NzRing -> R e. Ring ) |
|
| 7 | 6 | adantr | |- ( ( R e. NzRing /\ .0. e. E ) -> R e. Ring ) |
| 8 | simpr | |- ( ( R e. NzRing /\ .0. e. E ) -> .0. e. E ) |
|
| 9 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 10 | 9 3 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 11 | 7 10 | syl | |- ( ( R e. NzRing /\ .0. e. E ) -> ( 1r ` R ) e. ( Base ` R ) ) |
| 12 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 13 | 9 12 2 7 11 | ringlzd | |- ( ( R e. NzRing /\ .0. e. E ) -> ( .0. ( .r ` R ) ( 1r ` R ) ) = .0. ) |
| 14 | 1 9 12 2 | rrgeq0 | |- ( ( R e. Ring /\ .0. e. E /\ ( 1r ` R ) e. ( Base ` R ) ) -> ( ( .0. ( .r ` R ) ( 1r ` R ) ) = .0. <-> ( 1r ` R ) = .0. ) ) |
| 15 | 14 | biimpa | |- ( ( ( R e. Ring /\ .0. e. E /\ ( 1r ` R ) e. ( Base ` R ) ) /\ ( .0. ( .r ` R ) ( 1r ` R ) ) = .0. ) -> ( 1r ` R ) = .0. ) |
| 16 | 7 8 11 13 15 | syl31anc | |- ( ( R e. NzRing /\ .0. e. E ) -> ( 1r ` R ) = .0. ) |
| 17 | 5 16 | mtand | |- ( R e. NzRing -> -. .0. e. E ) |