This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element is the generator of a finite group iff the order of the generator equals the order of the group. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscyg.1 | |- B = ( Base ` G ) |
|
| iscyg.2 | |- .x. = ( .g ` G ) |
||
| iscyg3.e | |- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
||
| cyggenod.o | |- O = ( od ` G ) |
||
| Assertion | cyggenod | |- ( ( G e. Grp /\ B e. Fin ) -> ( X e. E <-> ( X e. B /\ ( O ` X ) = ( # ` B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | |- B = ( Base ` G ) |
|
| 2 | iscyg.2 | |- .x. = ( .g ` G ) |
|
| 3 | iscyg3.e | |- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
|
| 4 | cyggenod.o | |- O = ( od ` G ) |
|
| 5 | 1 2 3 | iscyggen | |- ( X e. E <-> ( X e. B /\ ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
| 6 | simplr | |- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> B e. Fin ) |
|
| 7 | simplll | |- ( ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) /\ n e. ZZ ) -> G e. Grp ) |
|
| 8 | simpr | |- ( ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) /\ n e. ZZ ) -> n e. ZZ ) |
|
| 9 | simplr | |- ( ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) /\ n e. ZZ ) -> X e. B ) |
|
| 10 | 1 2 | mulgcl | |- ( ( G e. Grp /\ n e. ZZ /\ X e. B ) -> ( n .x. X ) e. B ) |
| 11 | 7 8 9 10 | syl3anc | |- ( ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) /\ n e. ZZ ) -> ( n .x. X ) e. B ) |
| 12 | 11 | fmpttd | |- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ( n e. ZZ |-> ( n .x. X ) ) : ZZ --> B ) |
| 13 | 12 | frnd | |- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ran ( n e. ZZ |-> ( n .x. X ) ) C_ B ) |
| 14 | 6 13 | ssfid | |- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin ) |
| 15 | hashen | |- ( ( ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin /\ B e. Fin ) -> ( ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) = ( # ` B ) <-> ran ( n e. ZZ |-> ( n .x. X ) ) ~~ B ) ) |
|
| 16 | 14 6 15 | syl2anc | |- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ( ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) = ( # ` B ) <-> ran ( n e. ZZ |-> ( n .x. X ) ) ~~ B ) ) |
| 17 | eqid | |- ( n e. ZZ |-> ( n .x. X ) ) = ( n e. ZZ |-> ( n .x. X ) ) |
|
| 18 | 1 4 2 17 | dfod2 | |- ( ( G e. Grp /\ X e. B ) -> ( O ` X ) = if ( ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) , 0 ) ) |
| 19 | 18 | adantlr | |- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ( O ` X ) = if ( ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) , 0 ) ) |
| 20 | 14 | iftrued | |- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> if ( ran ( n e. ZZ |-> ( n .x. X ) ) e. Fin , ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) , 0 ) = ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) ) |
| 21 | 19 20 | eqtr2d | |- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) = ( O ` X ) ) |
| 22 | 21 | eqeq1d | |- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ( ( # ` ran ( n e. ZZ |-> ( n .x. X ) ) ) = ( # ` B ) <-> ( O ` X ) = ( # ` B ) ) ) |
| 23 | fisseneq | |- ( ( B e. Fin /\ ran ( n e. ZZ |-> ( n .x. X ) ) C_ B /\ ran ( n e. ZZ |-> ( n .x. X ) ) ~~ B ) -> ran ( n e. ZZ |-> ( n .x. X ) ) = B ) |
|
| 24 | 23 | 3expia | |- ( ( B e. Fin /\ ran ( n e. ZZ |-> ( n .x. X ) ) C_ B ) -> ( ran ( n e. ZZ |-> ( n .x. X ) ) ~~ B -> ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
| 25 | enrefg | |- ( B e. Fin -> B ~~ B ) |
|
| 26 | 25 | adantr | |- ( ( B e. Fin /\ ran ( n e. ZZ |-> ( n .x. X ) ) C_ B ) -> B ~~ B ) |
| 27 | breq1 | |- ( ran ( n e. ZZ |-> ( n .x. X ) ) = B -> ( ran ( n e. ZZ |-> ( n .x. X ) ) ~~ B <-> B ~~ B ) ) |
|
| 28 | 26 27 | syl5ibrcom | |- ( ( B e. Fin /\ ran ( n e. ZZ |-> ( n .x. X ) ) C_ B ) -> ( ran ( n e. ZZ |-> ( n .x. X ) ) = B -> ran ( n e. ZZ |-> ( n .x. X ) ) ~~ B ) ) |
| 29 | 24 28 | impbid | |- ( ( B e. Fin /\ ran ( n e. ZZ |-> ( n .x. X ) ) C_ B ) -> ( ran ( n e. ZZ |-> ( n .x. X ) ) ~~ B <-> ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
| 30 | 6 13 29 | syl2anc | |- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ( ran ( n e. ZZ |-> ( n .x. X ) ) ~~ B <-> ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
| 31 | 16 22 30 | 3bitr3rd | |- ( ( ( G e. Grp /\ B e. Fin ) /\ X e. B ) -> ( ran ( n e. ZZ |-> ( n .x. X ) ) = B <-> ( O ` X ) = ( # ` B ) ) ) |
| 32 | 31 | pm5.32da | |- ( ( G e. Grp /\ B e. Fin ) -> ( ( X e. B /\ ran ( n e. ZZ |-> ( n .x. X ) ) = B ) <-> ( X e. B /\ ( O ` X ) = ( # ` B ) ) ) ) |
| 33 | 5 32 | bitrid | |- ( ( G e. Grp /\ B e. Fin ) -> ( X e. E <-> ( X e. B /\ ( O ` X ) = ( # ` B ) ) ) ) |