This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cyclic group is a group which contains a generator. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscyg.1 | |- B = ( Base ` G ) |
|
| iscyg.2 | |- .x. = ( .g ` G ) |
||
| iscyg3.e | |- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
||
| Assertion | iscyg2 | |- ( G e. CycGrp <-> ( G e. Grp /\ E =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | |- B = ( Base ` G ) |
|
| 2 | iscyg.2 | |- .x. = ( .g ` G ) |
|
| 3 | iscyg3.e | |- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
|
| 4 | 1 2 | iscyg | |- ( G e. CycGrp <-> ( G e. Grp /\ E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) ) |
| 5 | 3 | neeq1i | |- ( E =/= (/) <-> { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } =/= (/) ) |
| 6 | rabn0 | |- ( { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } =/= (/) <-> E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) |
|
| 7 | 5 6 | bitri | |- ( E =/= (/) <-> E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) |
| 8 | 7 | anbi2i | |- ( ( G e. Grp /\ E =/= (/) ) <-> ( G e. Grp /\ E. x e. B ran ( n e. ZZ |-> ( n .x. x ) ) = B ) ) |
| 9 | 4 8 | bitr4i | |- ( G e. CycGrp <-> ( G e. Grp /\ E =/= (/) ) ) |