This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function restricted to upper integers converges iff the original function converges. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | climres | |- ( ( M e. ZZ /\ F e. V ) -> ( ( F |` ( ZZ>= ` M ) ) ~~> A <-> F ~~> A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 2 | resexg | |- ( F e. V -> ( F |` ( ZZ>= ` M ) ) e. _V ) |
|
| 3 | 2 | adantl | |- ( ( M e. ZZ /\ F e. V ) -> ( F |` ( ZZ>= ` M ) ) e. _V ) |
| 4 | simpr | |- ( ( M e. ZZ /\ F e. V ) -> F e. V ) |
|
| 5 | simpl | |- ( ( M e. ZZ /\ F e. V ) -> M e. ZZ ) |
|
| 6 | fvres | |- ( k e. ( ZZ>= ` M ) -> ( ( F |` ( ZZ>= ` M ) ) ` k ) = ( F ` k ) ) |
|
| 7 | 6 | adantl | |- ( ( ( M e. ZZ /\ F e. V ) /\ k e. ( ZZ>= ` M ) ) -> ( ( F |` ( ZZ>= ` M ) ) ` k ) = ( F ` k ) ) |
| 8 | 1 3 4 5 7 | climeq | |- ( ( M e. ZZ /\ F e. V ) -> ( ( F |` ( ZZ>= ` M ) ) ~~> A <-> F ~~> A ) ) |