This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product (left-distributivity). (Contributed by NM, 20-Nov-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | |- F = ( Scalar ` W ) |
|
| phllmhm.h | |- ., = ( .i ` W ) |
||
| phllmhm.v | |- V = ( Base ` W ) |
||
| ipdir.g | |- .+ = ( +g ` W ) |
||
| ipdir.p | |- .+^ = ( +g ` F ) |
||
| Assertion | ipdi | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., ( B .+ C ) ) = ( ( A ., B ) .+^ ( A ., C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | |- F = ( Scalar ` W ) |
|
| 2 | phllmhm.h | |- ., = ( .i ` W ) |
|
| 3 | phllmhm.v | |- V = ( Base ` W ) |
|
| 4 | ipdir.g | |- .+ = ( +g ` W ) |
|
| 5 | ipdir.p | |- .+^ = ( +g ` F ) |
|
| 6 | simpl | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. PreHil ) |
|
| 7 | simpr2 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> B e. V ) |
|
| 8 | simpr3 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> C e. V ) |
|
| 9 | simpr1 | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> A e. V ) |
|
| 10 | 1 2 3 4 5 | ipdir | |- ( ( W e. PreHil /\ ( B e. V /\ C e. V /\ A e. V ) ) -> ( ( B .+ C ) ., A ) = ( ( B ., A ) .+^ ( C ., A ) ) ) |
| 11 | 6 7 8 9 10 | syl13anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( B .+ C ) ., A ) = ( ( B ., A ) .+^ ( C ., A ) ) ) |
| 12 | 11 | fveq2d | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( *r ` F ) ` ( ( B .+ C ) ., A ) ) = ( ( *r ` F ) ` ( ( B ., A ) .+^ ( C ., A ) ) ) ) |
| 13 | 1 | phlsrng | |- ( W e. PreHil -> F e. *Ring ) |
| 14 | 13 | adantr | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> F e. *Ring ) |
| 15 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 16 | 1 2 3 15 | ipcl | |- ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( B ., A ) e. ( Base ` F ) ) |
| 17 | 6 7 9 16 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( B ., A ) e. ( Base ` F ) ) |
| 18 | 1 2 3 15 | ipcl | |- ( ( W e. PreHil /\ C e. V /\ A e. V ) -> ( C ., A ) e. ( Base ` F ) ) |
| 19 | 6 8 9 18 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( C ., A ) e. ( Base ` F ) ) |
| 20 | eqid | |- ( *r ` F ) = ( *r ` F ) |
|
| 21 | 20 15 5 | srngadd | |- ( ( F e. *Ring /\ ( B ., A ) e. ( Base ` F ) /\ ( C ., A ) e. ( Base ` F ) ) -> ( ( *r ` F ) ` ( ( B ., A ) .+^ ( C ., A ) ) ) = ( ( ( *r ` F ) ` ( B ., A ) ) .+^ ( ( *r ` F ) ` ( C ., A ) ) ) ) |
| 22 | 14 17 19 21 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( *r ` F ) ` ( ( B ., A ) .+^ ( C ., A ) ) ) = ( ( ( *r ` F ) ` ( B ., A ) ) .+^ ( ( *r ` F ) ` ( C ., A ) ) ) ) |
| 23 | 12 22 | eqtrd | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( *r ` F ) ` ( ( B .+ C ) ., A ) ) = ( ( ( *r ` F ) ` ( B ., A ) ) .+^ ( ( *r ` F ) ` ( C ., A ) ) ) ) |
| 24 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 25 | 24 | adantr | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> W e. LMod ) |
| 26 | 3 4 | lmodvacl | |- ( ( W e. LMod /\ B e. V /\ C e. V ) -> ( B .+ C ) e. V ) |
| 27 | 25 7 8 26 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( B .+ C ) e. V ) |
| 28 | 1 2 3 20 | ipcj | |- ( ( W e. PreHil /\ ( B .+ C ) e. V /\ A e. V ) -> ( ( *r ` F ) ` ( ( B .+ C ) ., A ) ) = ( A ., ( B .+ C ) ) ) |
| 29 | 6 27 9 28 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( *r ` F ) ` ( ( B .+ C ) ., A ) ) = ( A ., ( B .+ C ) ) ) |
| 30 | 1 2 3 20 | ipcj | |- ( ( W e. PreHil /\ B e. V /\ A e. V ) -> ( ( *r ` F ) ` ( B ., A ) ) = ( A ., B ) ) |
| 31 | 6 7 9 30 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( *r ` F ) ` ( B ., A ) ) = ( A ., B ) ) |
| 32 | 1 2 3 20 | ipcj | |- ( ( W e. PreHil /\ C e. V /\ A e. V ) -> ( ( *r ` F ) ` ( C ., A ) ) = ( A ., C ) ) |
| 33 | 6 8 9 32 | syl3anc | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( *r ` F ) ` ( C ., A ) ) = ( A ., C ) ) |
| 34 | 31 33 | oveq12d | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( ( ( *r ` F ) ` ( B ., A ) ) .+^ ( ( *r ` F ) ` ( C ., A ) ) ) = ( ( A ., B ) .+^ ( A ., C ) ) ) |
| 35 | 23 29 34 | 3eqtr3d | |- ( ( W e. PreHil /\ ( A e. V /\ B e. V /\ C e. V ) ) -> ( A ., ( B .+ C ) ) = ( ( A ., B ) .+^ ( A ., C ) ) ) |